por LuizCarlos » Sex Mai 11, 2012 16:04
Editado pela última vez por
LuizCarlos em Sex Mai 11, 2012 17:53, em um total de 1 vez.
-
LuizCarlos
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
por Cleyson007 » Sex Mai 11, 2012 17:43
Boa tarde Luiz Carlos!
O seu erro está na segunda linha (no sinal do denominador). O correto é:
![\frac{{a}^{2}\sqrt[]{m}+{a}^{3}-m\,\sqrt[]{m}-am}{{(\sqrt[]{m})}^{2}-{a}^{2}} \frac{{a}^{2}\sqrt[]{m}+{a}^{3}-m\,\sqrt[]{m}-am}{{(\sqrt[]{m})}^{2}-{a}^{2}}](/latexrender/pictures/7df20db0d048f2f7ed1110bb57efc2a9.png)
Agora tente dar sequência e encontrar a resposta correta
Surgindo dúvidas, comente, ok?
Até mais.
Cleyson007
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por LuizCarlos » Sex Mai 11, 2012 17:55
Cleyson007 escreveu:Boa tarde Luiz Carlos!
O seu erro está na segunda linha (no sinal do denominador). O correto é:
![\frac{{a}^{2}\sqrt[]{m}+{a}^{3}-m\,\sqrt[]{m}-am}{{(\sqrt[]{m})}^{2}-{a}^{2}} \frac{{a}^{2}\sqrt[]{m}+{a}^{3}-m\,\sqrt[]{m}-am}{{(\sqrt[]{m})}^{2}-{a}^{2}}](/latexrender/pictures/7df20db0d048f2f7ed1110bb57efc2a9.png)
Agora tente dar sequência e encontrar a resposta correta
Surgindo dúvidas, comente, ok?
Até mais.
Cleyson007
Olá amigo, Cleyson007, boa tarde! já corrigi o sinal! mas digo que está errado é a resposta!
![\sqrt[]{m}+a \sqrt[]{m}+a](/latexrender/pictures/909bf8b133850564e9e91eb92005e712.png)
.
-
LuizCarlos
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
por Cleyson007 » Dom Mai 13, 2012 16:33
Boa tarde Luiz Carlos!
Luiz, desculpe não ter respondido sua dúvida antes é porque tive prova nesse final de semana. Veja onde está o seu erro:
![\frac{-(-{a}^{2}+m)(a+\sqrt[]{m})}{m-{a}^{2}}\Rightarrow-\,(a+\sqrt[]{m})=-a-\sqrt[]{m} \frac{-(-{a}^{2}+m)(a+\sqrt[]{m})}{m-{a}^{2}}\Rightarrow-\,(a+\sqrt[]{m})=-a-\sqrt[]{m}](/latexrender/pictures/b78caeaed92b002d6e775b4a0da68312.png)
Comente qualquer dúvida
Abraço,
Cleyson007
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por LuizCarlos » Qua Mai 16, 2012 14:53
Cleyson007 escreveu:Boa tarde Luiz Carlos!
Luiz, desculpe não ter respondido sua dúvida antes é porque tive prova nesse final de semana. Veja onde está o seu erro:
![\frac{-(-{a}^{2}+m)(a+\sqrt[]{m})}{m-{a}^{2}}\Rightarrow-\,(a+\sqrt[]{m})=-a-\sqrt[]{m} \frac{-(-{a}^{2}+m)(a+\sqrt[]{m})}{m-{a}^{2}}\Rightarrow-\,(a+\sqrt[]{m})=-a-\sqrt[]{m}](/latexrender/pictures/b78caeaed92b002d6e775b4a0da68312.png)
Comente qualquer dúvida
Abraço,
Cleyson007
Olá amigo Cleyson007, sem problemas! consegui entender! obrigado amigo, abraço e boa sorte na sua prova!
-
LuizCarlos
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Racionalização de denominadores dúvida
por LuizCarlos » Qua Mai 09, 2012 22:16
- 4 Respostas
- 1935 Exibições
- Última mensagem por LuizAquino

Qui Mai 10, 2012 21:38
Álgebra Elementar
-
- Racionalizar
por douglasjro » Ter Mar 15, 2011 16:54
- 3 Respostas
- 1455 Exibições
- Última mensagem por douglasjro

Qua Mar 16, 2011 15:07
Álgebra Elementar
-
- racionalização de denominadores
por Claudia Silva » Qua Jun 22, 2011 21:15
- 1 Respostas
- 1671 Exibições
- Última mensagem por FilipeCaceres

Qua Jun 22, 2011 22:10
Álgebra Elementar
-
- Racionalização de denominadores
por LuizCarlos » Qua Mai 09, 2012 15:10
- 2 Respostas
- 1747 Exibições
- Última mensagem por LuizCarlos

Qua Mai 09, 2012 18:54
Álgebra Elementar
-
- racionalização de denominadores
por cafinfa » Dom Mai 20, 2012 16:43
- 3 Respostas
- 2829 Exibições
- Última mensagem por Molina

Dom Mai 20, 2012 17:19
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.