por vinik1 » Qua Mai 09, 2012 17:25
O gradiente de uma função determina a máxima taxa de variação certo?
O vetor mostra a direção e o modulo (que poderia ser chamado de "intensidade"?) dessa variação.. certo?
e a taxa mínima? como encontrar?
-
vinik1
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Ter Mar 08, 2011 19:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia elétrica
- Andamento: cursando
por LuizAquino » Sex Mai 11, 2012 11:49
vinik1 escreveu:O gradiente de uma função determina a máxima taxa de variação certo?
O vetor mostra a direção e o modulo (que poderia ser chamado de "intensidade"?) dessa variação.. certo?
e a taxa mínima? como encontrar?
O vetor

indica a direção e o sentido da maior variação, sendo que

é o valor (a intensidade) dessa maior variação.
Por outro lado, o vetor

indica a direção e o sentido da menor variação, sendo que

é o valor (a intensidade) dessa menor variação.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por vinik1 » Sex Mai 11, 2012 11:58
Certo...
A minha duvida era, se alterar o sinal, o modulo permanece o mesmo, entao a "intensidade" prevalece.
logo essa taxa na variação nao seria mínima, seria máxima em modulo, porem negativa.
Era isso que nao conseguia entender, mas de qualquer forma minha duvida foi resolvida. Muito obrigado.
-
vinik1
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Ter Mar 08, 2011 19:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia elétrica
- Andamento: cursando
por LuizAquino » Sex Mai 11, 2012 12:34
vinik1 escreveu:Certo...
A minha duvida era, se alterar o sinal, o modulo permanece o mesmo, entao a "intensidade" prevalece.
logo essa taxa na variação nao seria mínima, seria máxima em modulo, porem negativa.
Era isso que nao conseguia entender, mas de qualquer forma minha duvida foi resolvida. Muito obrigado.
A melhor forma de entender é analisar a definição de derivada direcional.
Você já deve saber que a derivada direcional de f na direção do vetor unitário

, que é representada por

, é dada por:

Dos conhecimentos de Geometria Analítica, sabemos que se

é o ângulo formado entre os vetores

e

, então temos que:

Lembrando que

(já que o vetor é unitário), temos que:

Dos conhecimentos de Trigonometria, sabemos que o máximo valor de

é 1, enquanto que o mínimo é -1.
Sendo assim, o máximo valor que

assume é

, enquanto que o mínimo é

.
Além disso, para ocorrer

, precisamos de

. Ou seja, para que

seja máxima, os vetores

e

devem possuir a mesma direção e sentido.
Por outro lado, para ocorrer

, precisamos de

. Ou seja, para que

seja mínima, os vetores

e

devem possuir a mesma direção e sentidos contrários.
Em resumo, temos que a maior variação ocorre na direção e sentido dados por

, enquanto que a menor variação ocorre na direção e sentido dados por

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por vinik1 » Sáb Mai 12, 2012 12:35
Perfeito, era isso mesmo que eu queria saber. Obrigado
-
vinik1
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Ter Mar 08, 2011 19:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Taxa de variação
por felipe_ad » Ter Jun 29, 2010 19:44
- 2 Respostas
- 27454 Exibições
- Última mensagem por Guill

Ter Fev 21, 2012 21:17
Cálculo: Limites, Derivadas e Integrais
-
- Taxa de variação
por AlbertoAM » Sáb Mai 21, 2011 14:23
- 1 Respostas
- 3986 Exibições
- Última mensagem por LuizAquino

Dom Mai 22, 2011 13:03
Cálculo: Limites, Derivadas e Integrais
-
- Taxa de Variação
por AlbertoAM » Sáb Mai 28, 2011 15:53
- 10 Respostas
- 8924 Exibições
- Última mensagem por AlbertoAM

Ter Mai 31, 2011 21:32
Cálculo: Limites, Derivadas e Integrais
-
- Taxa de Variação
por Pollyanna Moraes » Sáb Out 22, 2011 17:37
- 1 Respostas
- 7760 Exibições
- Última mensagem por LuizAquino

Dom Out 23, 2011 10:15
Cálculo: Limites, Derivadas e Integrais
-
- taxa de variacao
por cal12 » Dom Nov 27, 2011 16:46
- 3 Respostas
- 4510 Exibições
- Última mensagem por Russman

Sex Jun 29, 2012 22:01
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.