• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Racionalização de denominadores dúvida

Racionalização de denominadores dúvida

Mensagempor LuizCarlos » Qua Mai 09, 2012 22:16

Olá professores! LuizAquino, estive vendo os vídeos do nerckie, consegui resolver questões de racionalização de denominadores, que possuem o denominador sendo um produto notáveis!

Agora estou com dúvida nessa questão, e os vídeos do nerckei, ele não ensina nenhuma desse tipo! estou com dúvida de como resolver esse denominador, para depois racionalizar!\frac{4+\sqrt[]{3}}{\sqrt[]{4+\sqrt[]{3}}}
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Racionalização de denominadores dúvida

Mensagempor DanielFerreira » Qua Mai 09, 2012 22:38

\frac{4 + \sqrt[]{3}}{\sqrt[]{4 + \sqrt[]{3}}} =


\frac{4 + \sqrt[]{3}}{\sqrt[]{4 + \sqrt[]{3}}}.\frac{\sqrt[]{4 + \sqrt[]{3}}}{\sqrt[]{4 + \sqrt[]{3}}} =


\frac{(4 + \sqrt[]{3})\sqrt[]{4 + \sqrt[]{3}}}{(4 + \sqrt[]{3})} =


\sqrt[]{4 + \sqrt[]{3}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Racionalização de denominadores dúvida

Mensagempor LuizCarlos » Qua Mai 09, 2012 23:22

danjr5 escreveu:\frac{4 + \sqrt[]{3}}{\sqrt[]{4 + \sqrt[]{3}}} =


\frac{4 + \sqrt[]{3}}{\sqrt[]{4 + \sqrt[]{3}}}.\frac{\sqrt[]{4 + \sqrt[]{3}}}{\sqrt[]{4 + \sqrt[]{3}}} =


\frac{(4 + \sqrt[]{3})\sqrt[]{4 + \sqrt[]{3}}}{(4 + \sqrt[]{3})} =


\sqrt[]{4 + \sqrt[]{3}}


Olá amigo danjr5, obrigado por me ajudar como sempre! entendi, estava viajando aqui!
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Racionalização de denominadores dúvida

Mensagempor DanielFerreira » Qua Mai 09, 2012 23:31

Não há de quê!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Racionalização de denominadores dúvida

Mensagempor LuizAquino » Qui Mai 10, 2012 21:38

LuizCarlos escreveu:LuizAquino, estive vendo os vídeos do nerckie, consegui resolver questões de racionalização de denominadores


LuizCarlos, por favor procure não direcionar as suas mensagens para um participante específico.

Lembre-se que esse fórum é um ambiente multiparticipativo. A ideia é que todos podem ajudar. Ao enviar um tópico citando um participante específico, os outros participantes podem ficar desencorajados em responder.

Além disso, quando você cita um participante em seu tópico ele não recebe qualquer aviso sobre isso. Portanto, pode ser que ele nem veja o seu tópico!
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}