• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinar se duas retas são concorrentes, paralelas...

Determinar se duas retas são concorrentes, paralelas...

Mensagempor samra » Ter Mai 08, 2012 12:52

Olá, bom dia,

teve um dia que eu vi num vídeo que é possivel definir se duas retas são paralelas, concorrentes ou coincidentes a partir da razão dos coeficientes A, B, e C das equações geral da duas reta. Mas não me lembro qual é mesmo a regra para isso.
Se eu nn estiver enganada, se \frac{A}{A'}=\frac{B}{B'}=\frac{C}{C'} as equações dadas são coincidentes.

Alguém se lembra desse método e poderia coloca-lo aki, pf?

Obg, Sammy
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
samra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sex Jan 27, 2012 11:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Informatica
Andamento: formado

Re: Determinar se duas retas são concorrentes, paralelas...

Mensagempor Russman » Ter Mai 08, 2012 14:38

Retas:

ax+by +c = 0

dx+ey+f=0

Ou, de forma resumida

y=mx+n

y=qx+b

( tente, como exercício, determinar a relação dos coeficientes).

As retas serão coincidentes se m=q E b=n. Se somente m=q então são paralelas. Do contrário, são concorrentes pois lhes existe um ponto em comum.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Determinar se duas retas são concorrentes, paralelas...

Mensagempor samra » Ter Mai 08, 2012 22:23

Fazendo com a forma reduzida da formula eu ja sei rs
se {m}_{s}={m}_{r} e {n}_{r}={n}_{s} então, as retas são coincidentes;

se {m}_{s}={m}_{r} e {n}_{r}\neq{n}_{s} , as retas serão paralelas

e finalmente,
se {m}_{s}\neq{m}_{r} e {n}_{r}\neq{n}_{s} , as retas serão concorrentes.
Mas há uma forma mais simples de deduzir isso, sem passar para a forma reduzida. É a razão entre os coeficientes a, b e c da formula geral (é a aplicação indireta da mesma de cima)
E eu tinha esquecido qual é essa forma. Mas ja me lembrei, segue abaixo:

se \frac{A}{A'}=\frac{B}{B'}=\frac{C}{C'} => retas coincidentes

se \frac{A}{A'}=\frac{B}{B'}\neq\frac{C}{C'} => retas paralelas

se \frac{A}{A'}\neq\frac{B}{B'}\neq\frac{C}{C'} => retas concorrentes. :)

vlw ai
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
samra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sex Jan 27, 2012 11:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Informatica
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.