• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação do 2°grau

Equação do 2°grau

Mensagempor karen » Sáb Mai 05, 2012 15:53

1+\sqrt[2]{x+2}=\sqrt[2]{2x+2}

Eu resolvi da seguinte forma:

1) Elevei tudo ao quadrado para eliminar a raiz
1+x+2=2x+2
x=1

Na resposta do meu livro está x=7

O que eu fiz de errado?
karen
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Mai 03, 2012 20:49
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Eletrônica
Andamento: formado

Re: Equação do 2°grau

Mensagempor DanielFerreira » Sáb Mai 05, 2012 20:42

karen escreveu:1+\sqrt[2]{x+2}=\sqrt[2]{2x+2}

Eu resolvi da seguinte forma:

1) Elevei tudo ao quadrado para eliminar a raiz
1+x+2=2x+2
x=1

Na resposta do meu livro está x=7

O que eu fiz de errado?

Karen,
lembre-se que: (a + b)² = a² + 2.a.b + b²
1 + \sqrt[]{x + 2} = \sqrt[]{2x + 2}

(1 + \sqrt[]{x + 2})^2 = (\sqrt[]{2x + 2})^2

1 + 2\sqrt[]{x + 2} + x + 2 = 2x + 2

2\sqrt[]{x + 2} = x - 1

(2\sqrt[]{x + 2})^2 = (x - 1)^2

4(x + 2) = x^2 - 2x + 1

x^2 - 6x - 7 = 0

(x - 7)(x + 1) = 0

VERIFICANDO QUANDO x = - 1:
1 + \sqrt[]{x + 2} = \sqrt[]{2x + 2}

1 + \sqrt[]{- 1 + 2} = \sqrt[]{- 2 + 2}

1 + \sqrt[]{1} = \sqrt[]{0}

2 = 0
Falsa!!


VERIFICANDO QUANDO x = 7:
1 + \sqrt[]{x + 2} = \sqrt[]{2x + 2}

1 + \sqrt[]{7 + 2} = \sqrt[]{14 + 2}

1 + \sqrt[]{9} = \sqrt[]{16}

1 + 3 = 4
Verdadeira!!

Portanto,
x = 7
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.