• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada] regra do produto, da cadeia e trigonometria

[Derivada] regra do produto, da cadeia e trigonometria

Mensagempor souzalucasr » Sáb Mai 05, 2012 19:33

Olá pessoal,

Gostaria de ajuda na seguinte questão, que envolve derivadas com uso da regra do produto, regra da cadeia e trigonometria. Resolvi a questão em uma apostila, mas a solução está diferente do meu resultado e eu gostaria de verificar com vocês. Posto abaixo minha resolução e a resposta dada.

Determinar a derivada da expressão abaixo
f(x)=x\cdot  sen(\frac {\pi}{5}+3x)+cos^2(\frac {\pi}{5}+x)

Resolvi da seguinte forma:

f'(x)=(x\cdot  sen(\frac {\pi}{5}+3x))' +(cos^2(\frac {\pi}{5}+x))' (derivada da soma = soma das derivadas)

Na primeira derivada, como é um produto, aplico a regra do produto. Na segunda, aplico a regra da cadeia. Sendo assim, temos:

f'(x)=(x)'\cdot  sen(\frac {\pi}{5}+3x)+x\cdot (sen(\frac {\pi}{5}+3x))'+(cos(\frac {\pi}{5}+x))'\cdot ((cos(\frac {\pi}{5}+x))^2)'

f'(x)=sen(\frac {\pi}{5}+3x)+x\cdot cos(\frac {\pi}{5}+3x)-sen(\frac {\pi}{5}+x)\cdot 2 cos(\frac {\pi}{5}+x)

Então, minha resposta ficou assim:

f'(x)=sen(\frac {\pi}{5}+3x)+x\cdot cos(\frac {\pi}{5}+3x)-2sen(\frac {\pi}{5}+x) cos(\frac {\pi}{5}+x)

E a resposta da apostila é a seguinte:

f'(x)=sen(\frac {\pi}{5}+3x)+3x\cdot cos(\frac {\pi}{5}+3x)-sen(\frac {2\pi}{5}+2x)

Eu estou errado ou a resposta que está errada?

Desde já, muito obrigado pela ajuda de vocês!
souzalucasr
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Abr 05, 2012 11:21
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Economia
Andamento: cursando

Re: [Derivada] regra do produto, da cadeia e trigonometria

Mensagempor LuizAquino » Sáb Mai 05, 2012 19:54

souzalucasr escreveu:Olá pessoal,

Gostaria de ajuda na seguinte questão, que envolve derivadas com uso da regra do produto, regra da cadeia e trigonometria. Resolvi a questão em uma apostila, mas a solução está diferente do meu resultado e eu gostaria de verificar com vocês. Posto abaixo minha resolução e a resposta dada.

Determinar a derivada da expressão abaixo
f(x)=x\cdot  sen(\frac {\pi}{5}+3x)+cos^2(\frac {\pi}{5}+x)

Resolvi da seguinte forma:

f'(x)=(x\cdot  sen(\frac {\pi}{5}+3x))' +(cos^2(\frac {\pi}{5}+x))' (derivada da soma = soma das derivadas)

Na primeira derivada, como é um produto, aplico a regra do produto. Na segunda, aplico a regra da cadeia. Sendo assim, temos:

f'(x)=(x)'\cdot  sen(\frac {\pi}{5}+3x)+x\cdot (sen(\frac {\pi}{5}+3x))'+(cos(\frac {\pi}{5}+x))'\cdot ((cos(\frac {\pi}{5}+x))^2)'

f'(x)=sen(\frac {\pi}{5}+3x)+x\cdot cos(\frac {\pi}{5}+3x)-sen(\frac {\pi}{5}+x)\cdot 2 cos(\frac {\pi}{5}+x)


Você esqueceu de aplicar a regra da cadeia no termo \textrm{sen}\,\left(\frac{\pi}{5}+3x\right) . Note que:

\left[\textrm{sen}\,\left(\frac{\pi}{5}+3x\right)\right]^\prime = \left[\cos \left(\frac{\pi}{5}+3x\right)\right]\left(\frac{\pi}{5}+3x\right)^\prime = 3\cos \left(\frac{\pi}{5}+3x\right)

Já no termo \cos^2\left(\frac {\pi}{5}+x\right) temos que aplicar a regra da cadeia duas vezes. Note que:

\left\{\left[\cos \left(\frac {\pi}{5}+x\right)\right]^2\right\}^\prime = 2\left[\cos \left(\frac {\pi}{5}+x\right)\right]\left[\cos\left(\frac {\pi}{5}+x\right)\right]^\prime

=  2\left[\cos \left(\frac {\pi}{5}+x\right)\right]\left[-\,\textrm{sen}\,\left(\frac {\pi}{5}+x\right)\right]\left[\left(\frac {\pi}{5}+x\right)\right]^\prime

=  2\left[\cos \left(\frac {\pi}{5}+x\right)\right]\left[-\,\textrm{sen}\,\left(\frac {\pi}{5}+x\right)\right]\cdot 1

=  -2\cos \left(\frac {\pi}{5}+x\right)\,\textrm{sen}\,\left(\frac {\pi}{5}+x\right)

Por fim, usando a identidade trigonométrica 2\,\textrm{sen}\,\alpha\cos \alpha = \,\textrm{sen}\, 2\alpha , temos que:

-2\cos \left(\frac {\pi}{5}+x\right)\,\textrm{sen}\,\left(\frac {\pi}{5}+x\right) = -\,\textrm{sen}\,\left(\frac {2\pi}{5} + 2x\right)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Derivada] regra do produto, da cadeia e trigonometria

Mensagempor souzalucasr » Sáb Mai 05, 2012 20:16

Perfeito, Luiz! Mais uma vez você me ajudando =)

Muito obrigado!
souzalucasr
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Abr 05, 2012 11:21
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Economia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}