• Anúncio Global
    Respostas
    Exibições
    Última mensagem

DERIVADA - cálculo através da definição

DERIVADA - cálculo através da definição

Mensagempor emsbp » Sáb Abr 28, 2012 18:20

Boa tarde.
Peço ajuda no seguinte exercício: calcule pela definição a derivada da função f(x)= {log}^{2}(x+1) .
Fiz do seguinte modo:
\lim_{h\rightarrow0}\frac{f(x+h)-f(x)}{h} = \lim_{h\rightarrow0}\frac{{log}^{2}(x+h+1)-{log}^{2}(x+1)}{h} = \lim_{h\rightarrow0}\frac{{log}^{2}(\frac{x+h+1}{x+1})}{h} = \lim_{h\rightarrow0}log({\frac{x+h+1}{x+1}})^{\frac{1}{h}}log(\frac{x+h+1}{x+1}).
A partir daqui, tenho que usar o método por substituição, ou não?
Obrigado!
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado

Re: DERIVADA - cálculo através da definição

Mensagempor LuizAquino » Dom Abr 29, 2012 20:34

emsbp escreveu:Boa tarde.
Peço ajuda no seguinte exercício: calcule pela definição a derivada da função f(x)= {log}^{2}(x+1) .
Fiz do seguinte modo:
\lim_{h\rightarrow0}\frac{f(x+h)-f(x)}{h} = \lim_{h\rightarrow0}\frac{{log}^{2}(x+h+1)-{log}^{2}(x+1)}{h} = \lim_{h\rightarrow0}\frac{{log}^{2}(\frac{x+h+1}{x+1})}{h}


O último passo está errado. O correto seria fazer:

\lim_{h\to 0}\frac{{\log}^{2}(x+h+1)-{\log}^{2}(x+1)}{h} \,= \lim_{h\to 0}\frac{\left[\log(x+h+1) - \log(x+1)\right]\left[\log(x+h+1) + \log(x+1)\right]}{h}

= \lim_{h\to 0}\frac{\left[\log\left(\frac{x+h+1}{x+1}\right)\right]\left\{\log[(x+h+1)(x+1)]\right\}}{h}

= \left[\lim_{h\to 0}\frac{1}{h}\log\left(1 + \frac{h}{x+1}\right)\right]\lim_{h\to 0} \log[(x+h+1)(x+1)]

Agora tente continuar a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: DERIVADA - cálculo através da definição

Mensagempor emsbp » Seg Abr 30, 2012 17:29

Então, não se pode aplicar as regras dos logaritmos, quando estão em potência?
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado

Re: DERIVADA - cálculo através da definição

Mensagempor LuizAquino » Ter Mai 01, 2012 14:20

emsbp escreveu:Então, não se pode aplicar as regras dos logaritmos, quando estão em potência?


Naquele caso em questão, não pode.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: DERIVADA - cálculo através da definição

Mensagempor emsbp » Qua Mai 02, 2012 06:41

Ok. Muito obrigado!
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}