• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite indeterminado por L'Hôpital

Limite indeterminado por L'Hôpital

Mensagempor cjunior94 » Seg Abr 30, 2012 17:55

Bom dia,

gostaria de pedir ajuda nesse limite que não consegui resolver:

\lim_{x\rightarrow\infty} \frac{lnx}{\sqrt[]{x}}

desde já, obrigado!
cjunior94
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Mar 18, 2012 11:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite indeterminado por L'Hôpital

Mensagempor Guill » Seg Abr 30, 2012 21:21

\lim_{x\rightarrow\infty} \frac{lnx}{\sqrt[]{x}}


Usando a regra de L'Hospital:

\lim_{x\rightarrow\infty} \frac{\frac{1}{x}}{\frac{1}{2\sqrt[]{x}}}

\lim_{x\rightarrow\infty} \frac{2.\sqrt[]{x}}{x}

\lim_{x\rightarrow\infty} \frac{2}{\sqrt[]{x}} = 0
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limite indeterminado por L'Hôpital

Mensagempor cjunior94 » Seg Abr 30, 2012 22:30

Muito obrigado, Guill!

Havia chegado em:

\lim_{x\rightarrow\infty} \frac{2.\sqrt[]{x}}{x}

mas não pensei em dividir tudo por raiz de x para chegar no resultado:

\lim_{x\rightarrow\infty} \frac{2}{\sqrt[]{x}} = 0[/quote]

vlws mesmo!
cjunior94
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Mar 18, 2012 11:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite indeterminado por L'Hôpital

Mensagempor Guill » Seg Abr 30, 2012 23:58

De fato.
Editado pela última vez por Guill em Qua Mai 02, 2012 20:46, em um total de 1 vez.
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limite indeterminado por L'Hôpital

Mensagempor fraol » Ter Mai 01, 2012 17:47

Boa tarde,

Guill, estava estudando essa sua solução e encontrei uma inconsistência.Corrija-me se for o caso:

Guill escreveu:A partir de x = 1, a fração do numerador garante que a função f(x) nunca será menor do que a função . Portanto é possível afirmar que:

\frac{-1}{\sqrt{x}} \geq \frac{lnx}{\sqrt{x}} \geq \frac{1}{\sqrt{x}}



Um número negativo não é maior do que um número positivo e a relação proposta não vale sempre.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: