• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite indeterminado por L'Hôpital

Limite indeterminado por L'Hôpital

Mensagempor cjunior94 » Seg Abr 30, 2012 17:55

Bom dia,

gostaria de pedir ajuda nesse limite que não consegui resolver:

\lim_{x\rightarrow\infty} \frac{lnx}{\sqrt[]{x}}

desde já, obrigado!
cjunior94
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Mar 18, 2012 11:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite indeterminado por L'Hôpital

Mensagempor Guill » Seg Abr 30, 2012 21:21

\lim_{x\rightarrow\infty} \frac{lnx}{\sqrt[]{x}}


Usando a regra de L'Hospital:

\lim_{x\rightarrow\infty} \frac{\frac{1}{x}}{\frac{1}{2\sqrt[]{x}}}

\lim_{x\rightarrow\infty} \frac{2.\sqrt[]{x}}{x}

\lim_{x\rightarrow\infty} \frac{2}{\sqrt[]{x}} = 0
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limite indeterminado por L'Hôpital

Mensagempor cjunior94 » Seg Abr 30, 2012 22:30

Muito obrigado, Guill!

Havia chegado em:

\lim_{x\rightarrow\infty} \frac{2.\sqrt[]{x}}{x}

mas não pensei em dividir tudo por raiz de x para chegar no resultado:

\lim_{x\rightarrow\infty} \frac{2}{\sqrt[]{x}} = 0[/quote]

vlws mesmo!
cjunior94
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Mar 18, 2012 11:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite indeterminado por L'Hôpital

Mensagempor Guill » Seg Abr 30, 2012 23:58

De fato.
Editado pela última vez por Guill em Qua Mai 02, 2012 20:46, em um total de 1 vez.
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limite indeterminado por L'Hôpital

Mensagempor fraol » Ter Mai 01, 2012 17:47

Boa tarde,

Guill, estava estudando essa sua solução e encontrei uma inconsistência.Corrija-me se for o caso:

Guill escreveu:A partir de x = 1, a fração do numerador garante que a função f(x) nunca será menor do que a função . Portanto é possível afirmar que:

\frac{-1}{\sqrt{x}} \geq \frac{lnx}{\sqrt{x}} \geq \frac{1}{\sqrt{x}}



Um número negativo não é maior do que um número positivo e a relação proposta não vale sempre.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.