• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite indeterminado por L'Hôpital

Limite indeterminado por L'Hôpital

Mensagempor cjunior94 » Seg Abr 30, 2012 17:55

Bom dia,

gostaria de pedir ajuda nesse limite que não consegui resolver:

\lim_{x\rightarrow\infty} \frac{lnx}{\sqrt[]{x}}

desde já, obrigado!
cjunior94
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Mar 18, 2012 11:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite indeterminado por L'Hôpital

Mensagempor Guill » Seg Abr 30, 2012 21:21

\lim_{x\rightarrow\infty} \frac{lnx}{\sqrt[]{x}}


Usando a regra de L'Hospital:

\lim_{x\rightarrow\infty} \frac{\frac{1}{x}}{\frac{1}{2\sqrt[]{x}}}

\lim_{x\rightarrow\infty} \frac{2.\sqrt[]{x}}{x}

\lim_{x\rightarrow\infty} \frac{2}{\sqrt[]{x}} = 0
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limite indeterminado por L'Hôpital

Mensagempor cjunior94 » Seg Abr 30, 2012 22:30

Muito obrigado, Guill!

Havia chegado em:

\lim_{x\rightarrow\infty} \frac{2.\sqrt[]{x}}{x}

mas não pensei em dividir tudo por raiz de x para chegar no resultado:

\lim_{x\rightarrow\infty} \frac{2}{\sqrt[]{x}} = 0[/quote]

vlws mesmo!
cjunior94
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Mar 18, 2012 11:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite indeterminado por L'Hôpital

Mensagempor Guill » Seg Abr 30, 2012 23:58

De fato.
Editado pela última vez por Guill em Qua Mai 02, 2012 20:46, em um total de 1 vez.
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limite indeterminado por L'Hôpital

Mensagempor fraol » Ter Mai 01, 2012 17:47

Boa tarde,

Guill, estava estudando essa sua solução e encontrei uma inconsistência.Corrija-me se for o caso:

Guill escreveu:A partir de x = 1, a fração do numerador garante que a função f(x) nunca será menor do que a função . Portanto é possível afirmar que:

\frac{-1}{\sqrt{x}} \geq \frac{lnx}{\sqrt{x}} \geq \frac{1}{\sqrt{x}}



Um número negativo não é maior do que um número positivo e a relação proposta não vale sempre.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59