• Anúncio Global
    Respostas
    Exibições
    Última mensagem

estudo de sinais de uma equação de 3º grau

estudo de sinais de uma equação de 3º grau

Mensagempor ygor_macabu » Ter Mai 01, 2012 02:00

Gostaria de saber como que eu posso fazer um estudos de sinais de uma equação de 3º grau.
por exemplo: sei que um equação de 1º grau é uma reta. de 2º grau é uma parabola.
isso ajuda a marca os pontos de interesse para resolver a inequação ( no meu caso)
mas cheguei em uma equação de 3º grau e não consigo resolve-la.
ygor_macabu
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Abr 19, 2012 22:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica e Materiais
Andamento: cursando

Re: estudo de sinais de uma equação de 3º grau

Mensagempor Guill » Ter Mai 01, 2012 09:12

Uma equação do terceiro grau é uma função polinomial com 3 raízes. É preciso encontrar as três raízes, que é o lugar onde a função toca o eixo x (pode existir duas, uma ou nenhuma raíz).

Depois disso, é muito bom esboçar o gráfico da derivada dessa função (embora não seja preciso), pois ele te garante em quais valores a função do 3º grau está crescendo e em quais ela está decrescendo. (Em valores positivos da derivada, a função está crescendo, em valores negativos, decrescendo).



Exemplo:

Seja a inequação :

x³ - 2x² - x + 1 > -1

x³ - 2x² - x + 2 > 0

x²(x - 2) - (x - 2) > 0

(x² - 1)(x - 2) > 0

(x + 1)(x - 1)(x - 2) > 0


Sabemos que as raízes são -1 ; 1 ; 2, mas não sabemos em quais intervalos a função é positiva ou negativa. Ao invéz de olhar a derivada, façamos algo mais lógico:

O primeiro dos números (seguindo a ordem do plano cartesiano) que zera a função é o x = -1. Antes dele, observamos que as funções possuíam valores negarivos, pois (x + 1) era negativo, (x - 1) também e (x - 2) também (- - - = -). Agora, depois de x = -1, teremos:

+ - - = +

Até que cheguemos em x = 1, onde a situação se torna:

+ + - = -

Até atingirmos x = 2, onde teremos:

+ + + = +



Portanto, podemos afirmar:

(-\infty ; -1) --> Negativa

(-1 ; 1) --> Positiva

(1 ; 2) ---> Negativa

(2 ; \infty) ---> Positiva



Dessa forma, fica simples definir o conjunto solução:

S = {x\in\Re | (-1 < x < 1)ou(x>2)}
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59