• Anúncio Global
    Respostas
    Exibições
    Última mensagem

estudo de sinais de uma equação de 3º grau

estudo de sinais de uma equação de 3º grau

Mensagempor ygor_macabu » Ter Mai 01, 2012 02:00

Gostaria de saber como que eu posso fazer um estudos de sinais de uma equação de 3º grau.
por exemplo: sei que um equação de 1º grau é uma reta. de 2º grau é uma parabola.
isso ajuda a marca os pontos de interesse para resolver a inequação ( no meu caso)
mas cheguei em uma equação de 3º grau e não consigo resolve-la.
ygor_macabu
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Abr 19, 2012 22:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica e Materiais
Andamento: cursando

Re: estudo de sinais de uma equação de 3º grau

Mensagempor Guill » Ter Mai 01, 2012 09:12

Uma equação do terceiro grau é uma função polinomial com 3 raízes. É preciso encontrar as três raízes, que é o lugar onde a função toca o eixo x (pode existir duas, uma ou nenhuma raíz).

Depois disso, é muito bom esboçar o gráfico da derivada dessa função (embora não seja preciso), pois ele te garante em quais valores a função do 3º grau está crescendo e em quais ela está decrescendo. (Em valores positivos da derivada, a função está crescendo, em valores negativos, decrescendo).



Exemplo:

Seja a inequação :

x³ - 2x² - x + 1 > -1

x³ - 2x² - x + 2 > 0

x²(x - 2) - (x - 2) > 0

(x² - 1)(x - 2) > 0

(x + 1)(x - 1)(x - 2) > 0


Sabemos que as raízes são -1 ; 1 ; 2, mas não sabemos em quais intervalos a função é positiva ou negativa. Ao invéz de olhar a derivada, façamos algo mais lógico:

O primeiro dos números (seguindo a ordem do plano cartesiano) que zera a função é o x = -1. Antes dele, observamos que as funções possuíam valores negarivos, pois (x + 1) era negativo, (x - 1) também e (x - 2) também (- - - = -). Agora, depois de x = -1, teremos:

+ - - = +

Até que cheguemos em x = 1, onde a situação se torna:

+ + - = -

Até atingirmos x = 2, onde teremos:

+ + + = +



Portanto, podemos afirmar:

(-\infty ; -1) --> Negativa

(-1 ; 1) --> Positiva

(1 ; 2) ---> Negativa

(2 ; \infty) ---> Positiva



Dessa forma, fica simples definir o conjunto solução:

S = {x\in\Re | (-1 < x < 1)ou(x>2)}
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}