• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[fatoração de polinômios]

[fatoração de polinômios]

Mensagempor jvabatista » Qua Abr 18, 2012 01:42

Olá.

Estou com problemas para resolver isto:

\frac{8{x}^{\frac{3}{5}}-2\sqrt[3]{{x}^{2}}+{x}^{\frac{4}{5}}}{\sqrt[2]{{x}^{5}}}

**Divida, deixando aparecer somente expoentes positivos


Separei cada membro de cima com o mesmo denominador, dividi cada um dos três separadamente e encontrei isto:

\frac{8}{{x}^{\frac{3}{5}}}-\frac{2}{{x}^{\frac{11}{6}}}+\frac{1}{{x}^{\frac{17}{10}}}

Não sei como simplificar mais do que isso e a resposta no livro é 8{x}^{\frac{2}{5}}-2{x}^{\frac{7}{5}}+{x}^{\frac{3}{5}}.

Tentei resolver pelo método das chaves mas obtive o mesmo resultado. Há algum outro método para se chegar ao resultado do livro ou algo mais a simplificar de até onde calculei ?
jvabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Abr 16, 2012 22:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [fatoração de polinômios]

Mensagempor DanielFerreira » Qua Abr 18, 2012 23:08

\frac{8x^{\frac{3}{5}} - 2\sqrt[3]{x^2} + x^{\frac{4}{5}}}{\sqrt[]{x^5}} =

\frac{8x^{\frac{3}{5}} - 2x^{\frac{2}{3}} + x^{\frac{4}{5}}}{x^{\frac{5}{2}}}} =

Aplicando MMC vamos deixar os denominadores iguais:

\frac{8x^{\frac{18}{30}} - 2x^{\frac{20}{30}} + x^{\frac{24}{30}}}{x^{\frac{75}{30}}}} =

Acho que agora vc consegue, tente!

Qualquer dúvida retorne.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [fatoração de polinômios]

Mensagempor jvabatista » Qui Abr 26, 2012 17:49

Oi, tentei resolver aplicando o MMC, da mesma forma que fiz o anterior - separei cada termo com seu denominador -, ficando:

\frac{8{x}^{\frac{18}{30}}}{{x}^{\frac{75}{30}}}-\frac{{x}^{\frac{20}{30}}}{{x}^{\frac{75}{30}}}+\frac{{x}^{\frac{24}{30}}}{{x}^{\frac{75}{30}}}.

Mas ainda continuo obtendo o mesmo resultado de anteriormente. Há outro meio de seguir a equação que não seja este que utilizei ?
jvabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Abr 16, 2012 22:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [fatoração de polinômios]

Mensagempor DanielFerreira » Qui Abr 26, 2012 20:13

jvabatista escreveu:Oi, tentei resolver aplicando o MMC, da mesma forma que fiz o anterior - separei cada termo com seu denominador -, ficando:

\frac{8{x}^{\frac{18}{30}}}{{x}^{\frac{75}{30}}}-\frac{{x}^{\frac{20}{30}}}{{x}^{\frac{75}{30}}}+\frac{{x}^{\frac{24}{30}}}{{x}^{\frac{75}{30}}}.

Mas ainda continuo obtendo o mesmo resultado de anteriormente. Há outro meio de seguir a equação que não seja este que utilizei ?

Você esqueceu de colocar o 2 (termo negativo).
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [fatoração de polinômios]

Mensagempor jvabatista » Qui Abr 26, 2012 20:52

Desculpe, é verdade. Esqueci o 2 quando digitei a expressão. Mas ela continua dando o mesmo resultado.
jvabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Abr 16, 2012 22:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [fatoração de polinômios]

Mensagempor DanielFerreira » Qui Abr 26, 2012 21:15

jvabatista escreveu:Desculpe, é verdade. Esqueci o 2 quando digitei a expressão. Mas ela continua dando o mesmo resultado.

Então vamos a ela.
\frac{8x^\frac{18}{30} - 2x^\frac{20}{30} + x^\frac{24}{30}}{x^\frac{75}{30}} =

Pelo que entendi até aqui tudo bem, certo?!

Então, coloque x^\frac{75}{30} em evidência, veja:

\frac{x^\frac{75}{30}( 8x^\frac{- 57}{30} - 2x^\frac{- 55}{30} + x^\frac{- 51}{30})}{x^\frac{75}{30}} =

8x^\frac{- 19}{10} - 2x^\frac{- 11}{6} + x^\frac{- 17}{10} =

ou

\frac{8}{x^\frac{19}{10}} - \frac{2}{x^\frac{11}{6}} + \frac{1}{x^\frac{17}{10}}

também encontrou isso?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [fatoração de polinômios]

Mensagempor jvabatista » Qui Abr 26, 2012 21:27

Sim. Então a resposta do livro tá errada mesmo né? rsrs. Muito obrigado.
jvabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Abr 16, 2012 22:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [fatoração de polinômios]

Mensagempor DanielFerreira » Dom Abr 29, 2012 00:42

jvabatista escreveu:Sim. Então a resposta do livro tá errada mesmo né? rsrs. Muito obrigado.

De acordo!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.