• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[fatoração de polinômios]

[fatoração de polinômios]

Mensagempor jvabatista » Qua Abr 18, 2012 01:42

Olá.

Estou com problemas para resolver isto:

\frac{8{x}^{\frac{3}{5}}-2\sqrt[3]{{x}^{2}}+{x}^{\frac{4}{5}}}{\sqrt[2]{{x}^{5}}}

**Divida, deixando aparecer somente expoentes positivos


Separei cada membro de cima com o mesmo denominador, dividi cada um dos três separadamente e encontrei isto:

\frac{8}{{x}^{\frac{3}{5}}}-\frac{2}{{x}^{\frac{11}{6}}}+\frac{1}{{x}^{\frac{17}{10}}}

Não sei como simplificar mais do que isso e a resposta no livro é 8{x}^{\frac{2}{5}}-2{x}^{\frac{7}{5}}+{x}^{\frac{3}{5}}.

Tentei resolver pelo método das chaves mas obtive o mesmo resultado. Há algum outro método para se chegar ao resultado do livro ou algo mais a simplificar de até onde calculei ?
jvabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Abr 16, 2012 22:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [fatoração de polinômios]

Mensagempor DanielFerreira » Qua Abr 18, 2012 23:08

\frac{8x^{\frac{3}{5}} - 2\sqrt[3]{x^2} + x^{\frac{4}{5}}}{\sqrt[]{x^5}} =

\frac{8x^{\frac{3}{5}} - 2x^{\frac{2}{3}} + x^{\frac{4}{5}}}{x^{\frac{5}{2}}}} =

Aplicando MMC vamos deixar os denominadores iguais:

\frac{8x^{\frac{18}{30}} - 2x^{\frac{20}{30}} + x^{\frac{24}{30}}}{x^{\frac{75}{30}}}} =

Acho que agora vc consegue, tente!

Qualquer dúvida retorne.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [fatoração de polinômios]

Mensagempor jvabatista » Qui Abr 26, 2012 17:49

Oi, tentei resolver aplicando o MMC, da mesma forma que fiz o anterior - separei cada termo com seu denominador -, ficando:

\frac{8{x}^{\frac{18}{30}}}{{x}^{\frac{75}{30}}}-\frac{{x}^{\frac{20}{30}}}{{x}^{\frac{75}{30}}}+\frac{{x}^{\frac{24}{30}}}{{x}^{\frac{75}{30}}}.

Mas ainda continuo obtendo o mesmo resultado de anteriormente. Há outro meio de seguir a equação que não seja este que utilizei ?
jvabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Abr 16, 2012 22:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [fatoração de polinômios]

Mensagempor DanielFerreira » Qui Abr 26, 2012 20:13

jvabatista escreveu:Oi, tentei resolver aplicando o MMC, da mesma forma que fiz o anterior - separei cada termo com seu denominador -, ficando:

\frac{8{x}^{\frac{18}{30}}}{{x}^{\frac{75}{30}}}-\frac{{x}^{\frac{20}{30}}}{{x}^{\frac{75}{30}}}+\frac{{x}^{\frac{24}{30}}}{{x}^{\frac{75}{30}}}.

Mas ainda continuo obtendo o mesmo resultado de anteriormente. Há outro meio de seguir a equação que não seja este que utilizei ?

Você esqueceu de colocar o 2 (termo negativo).
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [fatoração de polinômios]

Mensagempor jvabatista » Qui Abr 26, 2012 20:52

Desculpe, é verdade. Esqueci o 2 quando digitei a expressão. Mas ela continua dando o mesmo resultado.
jvabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Abr 16, 2012 22:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [fatoração de polinômios]

Mensagempor DanielFerreira » Qui Abr 26, 2012 21:15

jvabatista escreveu:Desculpe, é verdade. Esqueci o 2 quando digitei a expressão. Mas ela continua dando o mesmo resultado.

Então vamos a ela.
\frac{8x^\frac{18}{30} - 2x^\frac{20}{30} + x^\frac{24}{30}}{x^\frac{75}{30}} =

Pelo que entendi até aqui tudo bem, certo?!

Então, coloque x^\frac{75}{30} em evidência, veja:

\frac{x^\frac{75}{30}( 8x^\frac{- 57}{30} - 2x^\frac{- 55}{30} + x^\frac{- 51}{30})}{x^\frac{75}{30}} =

8x^\frac{- 19}{10} - 2x^\frac{- 11}{6} + x^\frac{- 17}{10} =

ou

\frac{8}{x^\frac{19}{10}} - \frac{2}{x^\frac{11}{6}} + \frac{1}{x^\frac{17}{10}}

também encontrou isso?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [fatoração de polinômios]

Mensagempor jvabatista » Qui Abr 26, 2012 21:27

Sim. Então a resposta do livro tá errada mesmo né? rsrs. Muito obrigado.
jvabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Abr 16, 2012 22:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [fatoração de polinômios]

Mensagempor DanielFerreira » Dom Abr 29, 2012 00:42

jvabatista escreveu:Sim. Então a resposta do livro tá errada mesmo né? rsrs. Muito obrigado.

De acordo!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D