• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limite] envolvendo funções trigonométricas

[limite] envolvendo funções trigonométricas

Mensagempor Henrique Bueno » Ter Abr 24, 2012 22:29

na resolução do seguinte limite:

\lim_{v\to1}\frac{1-v^2}{sen(v\pi)}}

eu havia resolvido multiplicando por 1/v em cima e em baixo e encontrado 0/pi como resultado, porém depois me dei conta de que o limite fundamental trigonométrico (lim x->0 sen u / u = 1 ) somente é válido nos casos onde x->0
Então não consigo resolver mais o exercício :s preciso de ajuda, a prova está chegando :/

grato
Editado pela última vez por Henrique Bueno em Ter Abr 24, 2012 22:46, em um total de 1 vez.
Henrique Bueno
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Mar 02, 2011 19:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [limite] envolvendo funções trigonométricas

Mensagempor TheoFerraz » Ter Abr 24, 2012 22:37

Henrrique, voce não colocou para onde v está tendendo!
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: [limite] envolvendo funções trigonométricas

Mensagempor Henrique Bueno » Ter Abr 24, 2012 22:46

Corrigido, obrigado !
Henrique Bueno
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Mar 02, 2011 19:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [limite] envolvendo funções trigonométricas

Mensagempor TheoFerraz » Qua Abr 25, 2012 01:01

imagino que se voce fizer a troca de variáveis:

x \equiv u - 1

você terá que quando u tende a 1 x tende a zero, portanto o limite equivale a:

\lim_{x\rightarrow 0} \frac{ 1 - {(x+1)}^{2}}{sin((x+1) \pi)} = \lim_{x\rightarrow 0} \frac{ - {x}^{2} - 2x  }{sin(\pi x + \pi)}

com isso, e utilizando a propriedade trigonométrica

sin( a + b) = sin(a)cos(b) + sin(b)cos(a)

que no caso fica

sin( \pi x + \pi) = sin(\pi x)cos(\pi ) + sin(\pi )cos(\pi x )

que resulta em :

sin( \pi x + \pi) = sin(\pi x)cos(\pi ) + sin(\pi )cos(\pi x) = sin(\pi x)

e seu limite fica:

\lim_{x\rightarrow 0} \frac{ - {x}^{2} - 2x  }{sin(\pi x )}

Agora tente dessa forma. [=
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: [limite] envolvendo funções trigonométricas

Mensagempor TheoFerraz » Qua Abr 25, 2012 01:01

imagino que se voce fizer a troca de variáveis:

x \equiv u - 1

você terá que quando u tende a 1 x tende a zero, portanto o limite equivale a:

\lim_{x\rightarrow 0} \frac{ 1 - {(x+1)}^{2}}{sin((x+1) \pi)} = \lim_{x\rightarrow 0} \frac{ - {x}^{2} - 2x  }{sin(\pi x + \pi)}

com isso, e utilizando a propriedade trigonométrica

sin( a + b) = sin(a)cos(b) + sin(b)cos(a)

que no caso fica

sin( \pi x + \pi) = sin(\pi x)cos(\pi ) + sin(\pi )cos(\pi x )

que resulta em :

sin( \pi x + \pi) = sin(\pi x)cos(\pi ) + sin(\pi )cos(\pi x) = sin(\pi x)

e seu limite fica:

\lim_{x\rightarrow 0} \frac{ - {x}^{2} - 2x  }{sin(\pi x )}

Agora tente dessa forma. [=
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: [limite] envolvendo funções trigonométricas

Mensagempor Henrique Bueno » Qua Abr 25, 2012 01:29

acho que faltou um sinal negativo no sen(pi.x) em baixo, mas você me ajudou MTO com essa sacada do x=u-1, muito obrigado, agora eu consegui resolver o exercício
Henrique Bueno
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Mar 02, 2011 19:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59