por Henrique Bueno » Ter Abr 24, 2012 22:29
na resolução do seguinte limite:

eu havia resolvido multiplicando por 1/v em cima e em baixo e encontrado 0/pi como resultado, porém depois me dei conta de que o limite fundamental trigonométrico (lim x->0 sen u / u = 1 ) somente é válido nos casos onde x->0
Então não consigo resolver mais o exercício :s preciso de ajuda, a prova está chegando :/
grato
Editado pela última vez por
Henrique Bueno em Ter Abr 24, 2012 22:46, em um total de 1 vez.
-
Henrique Bueno
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Qua Mar 02, 2011 19:13
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por TheoFerraz » Ter Abr 24, 2012 22:37
Henrrique, voce não colocou para onde v está tendendo!
-
TheoFerraz
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Qua Abr 13, 2011 19:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Física
- Andamento: cursando
por Henrique Bueno » Ter Abr 24, 2012 22:46
Corrigido, obrigado !
-
Henrique Bueno
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Qua Mar 02, 2011 19:13
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por TheoFerraz » Qua Abr 25, 2012 01:01
imagino que se voce fizer a troca de variáveis:

você terá que quando u tende a 1 x tende a zero, portanto o limite equivale a:

com isso, e utilizando a propriedade trigonométrica

que no caso fica

que resulta em :

e seu limite fica:

Agora tente dessa forma. [=
-
TheoFerraz
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Qua Abr 13, 2011 19:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Física
- Andamento: cursando
por TheoFerraz » Qua Abr 25, 2012 01:01
imagino que se voce fizer a troca de variáveis:

você terá que quando u tende a 1 x tende a zero, portanto o limite equivale a:

com isso, e utilizando a propriedade trigonométrica

que no caso fica

que resulta em :

e seu limite fica:

Agora tente dessa forma. [=
-
TheoFerraz
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Qua Abr 13, 2011 19:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Física
- Andamento: cursando
por Henrique Bueno » Qua Abr 25, 2012 01:29
acho que faltou um sinal negativo no sen(pi.x) em baixo, mas você me ajudou MTO com essa sacada do x=u-1, muito obrigado, agora eu consegui resolver o exercício
-
Henrique Bueno
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Qua Mar 02, 2011 19:13
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Funções Envolvendo Trigonometria
por ElizabethS2 » Qua Dez 08, 2010 12:14
- 1 Respostas
- 2025 Exibições
- Última mensagem por Elcioschin

Qua Dez 08, 2010 15:26
Trigonometria
-
- Limite (envolvendo Módulo)
por killerkill » Ter Ago 09, 2011 23:12
- 7 Respostas
- 10802 Exibições
- Última mensagem por LuizAquino

Qua Ago 10, 2011 11:47
Cálculo: Limites, Derivadas e Integrais
-
- limite envolvendo modulo
por matmatco » Qui Mar 22, 2012 23:18
- 7 Respostas
- 4329 Exibições
- Última mensagem por LuizAquino

Ter Mar 27, 2012 13:14
Cálculo: Limites, Derivadas e Integrais
-
- limite envolvendo exponencial
por renat » Dom Jun 11, 2017 20:37
- 0 Respostas
- 2745 Exibições
- Última mensagem por renat

Dom Jun 11, 2017 20:37
Cálculo: Limites, Derivadas e Integrais
-
- [limites] calculo de limite envolvendo n e x
por Henrique Bueno » Dom Abr 15, 2012 14:31
- 2 Respostas
- 2074 Exibições
- Última mensagem por Henrique Bueno

Seg Abr 16, 2012 19:08
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.