• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fração algébrica

Fração algébrica

Mensagempor LuizCarlos » Sex Abr 20, 2012 13:09

Olá amigos,
estou resolvendo umas contas de frações algébricas, mas essa aqui, não está dando resultado correto!

\frac{1}{1} + \frac{1}{x+1} - \frac{x}{x-1} = \frac{(x+1).(x-1)+(x-1)-x.(x-1)}{(x+1).(x-1)}

\frac{{x}^{2}-1+x-1-{x}^{2}+x}{{x}^{2}-1} = \frac{-2 + 2x}{{x}^{2}-1} = \frac{2.(x-1)}{(x+1).(x-1)} = \frac{2}{x+1}
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Fração algébrica

Mensagempor Cleyson007 » Sex Abr 20, 2012 14:04

Boa tarde Luiz Carlos!

Luiz, parabéns o m.m.c está correto!

\frac{(x+1)(x-1)+(x-1)+(-x)(x+1)}{(x+1)(x-1)}

Repare que você cometeu um pequeno erro na primeira parte. Tente refazer pelo que deixei escrito.

Comente qualquer dúvida :y:

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Fração algébrica

Mensagempor LuizCarlos » Sex Abr 20, 2012 14:48

Cleyson007 escreveu:Boa tarde Luiz Carlos!

Luiz, parabéns o m.m.c está correto!

\frac{(x+1)(x-1)+(x-1)+(-x)(x+1)}{(x+1)(x-1)}

Repare que você cometeu um pequeno erro na primeira parte. Tente refazer pelo que deixei escrito.

Comente qualquer dúvida :y:

Até mais.


Olá amigo Cleyson007 obrigado pelo elogio e pela ajuda, estou me esforçando para aprender matemática, e frações algébricas =D.

\frac{(x+1)(x-1)+(x-1)+(-x)(x+1)}{(x+1)(x-1)} =  \frac{({x}^{2}-1) + (x-1) + (-{x}^{2}-x)}{{x}^{2}-1} = \frac{-2}{{x}^{2}-1}

O resultado no livro é \frac{2}{{x}^{2}-1}
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Fração algébrica

Mensagempor Cleyson007 » Sex Abr 20, 2012 15:07

Boa tarde amigo Luiz!

Luiz, com certeza o seu esforço será recompensado..

Quanto a resposta, não encontrei erro algum, ok?

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Fração algébrica

Mensagempor LuizCarlos » Sex Abr 20, 2012 17:13

Cleyson007 escreveu:Boa tarde amigo Luiz!

Luiz, com certeza o seu esforço será recompensado..

Quanto a resposta, não encontrei erro algum, ok?

Até mais.


Certo, muito obrigado amigo cleyson007, por me ajudar! Deus te ajude também! abraço e tudo de bom para você e sua família!
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Fração algébrica

Mensagempor Cleyson007 » Sex Abr 20, 2012 17:44

Boa tarde amigo Luiz!

Para mim é um prazer ajudar.. Sempre que o puder, fique certo de que o farei.

Com certeza Deus nos ajuda e nos torna pessoas ainda melhores..

Também estendo os cumprimentos à você e sua família. Bom final de semana!

Abraço,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59