• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressões Aritméticas

Progressões Aritméticas

Mensagempor Anderson Alves » Ter Abr 17, 2012 22:30

Olá Pessoal.
Tenho dúvidas neste exercício.

1) Em uma progressão aritmética de razão 3, a soma do 5º com o 10º termo é 19. A soma de seus 16 primeiros termos vale quanto?

Resp.: 200
O problema é chegar neste resultado. Fiz das maneiras possíveis de, com fórmulas, e não consegui chegar a este resultado.

Ficarei grato pela ajuda....
Anderson Alves
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Sex Fev 24, 2012 22:39
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Informática
Andamento: formado

Re: Progressões Aritméticas

Mensagempor fraol » Ter Abr 17, 2012 22:56

Anderson Alves escreveu: Em uma progressão aritmética de razão 3, a soma do 5º com o 10º termo é 19. A soma de seus 16 primeiros termos vale quanto?


a_{10} = a_5 + 5r ( r = razão = 3 )

a_10 = a_5 + 15 como a_5 + a_{10} = 19 => a_5 + a_5 + 15 = 19 \iff a_5 = 2

então a_{10} = 17

a_{1} = a_{5} - 4r \iff a_{1} = 2 -12 = -10.

a_{16} = a_{10} + 6r \iff a_{16} = 17 + 18.

Agora você pode calcular a soma: S_{16} = 16 . \frac{(a_1+a_{16})}{2}, ok?

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Progressões Aritméticas

Mensagempor vanezainferniza » Qui Jun 21, 2012 17:24

O computador de marcela foi comprado em 1° de março de 2008?
Continuação - e sofreu depreciação de R$ 25,00 a cada mês. Sabendo que 1° de março de 2010 esse computador foi avaliado em R$ 800,00, escreva o termo geral de uma PA que expresse seu valor a cada mês. Depois determine o valor desse computador em 1° de julho de 2008 ?
vanezainferniza
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jun 21, 2012 17:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Progressões Aritméticas

Mensagempor Russman » Qui Jun 21, 2012 21:46

Eu tenho uma solução diferente.

O problema informa que

\left\{\begin{matrix}
r=3\\ 
a(5)+a(10) = 19
\end{matrix}\right..

Lembrando que,

a(n) = a(1) + (n-1)r

então

a(5) +a(10)= 2a(1)+13r \Rightarrow 2a(1)+13.3=19 \therefore a(1) = -10.

Agora,

S_{n} = \frac{n}{2}(a(1)+a(n))\Rightarrow S_{16} = \frac{16}{2}(-10 -10+15.3)= 200.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}