• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[regra do quociente] ajuda por favor

[regra do quociente] ajuda por favor

Mensagempor ricardosanto » Seg Abr 16, 2012 12:26

y=(1+\sqrt{x})/(1-\sqrt{x})
não sei como fazer os cálculos por favor ajudem. qualquer coisa posta aí alguma ajuda externa.
abraços
ricardosanto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Seg Abr 16, 2012 12:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia civil
Andamento: cursando

Re: [regra do quociente] ajuda por favor

Mensagempor Fabio Wanderley » Seg Abr 16, 2012 15:50

Mas qual é o exercício? É para derivar a equação?
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [regra do quociente] ajuda por favor

Mensagempor LuizAquino » Seg Abr 16, 2012 16:42

ricardosanto escreveu:y=(1+\sqrt{x})/(1-\sqrt{x})
não sei como fazer os cálculos por favor ajudem. qualquer coisa posta aí alguma ajuda externa.


Para estudar a resolução, você pode usar um programa. Por exemplo, o SAGE, o Mathematica, o Maple, etc.

Alguns desses programas são disponibilizados também na forma de uma página na internet. É o caso do SAGE Notebook e do Mathematica. Por exemplo, siga os passos abaixo para conferir a resolução.

  • Acesse a página: http://www.wolframalpha.com/
  • No campo de entrada, digite:
    Código: Selecionar todos
    d/dx (1 + sqrt(x))/(1 - sqrt(x))
  • Clique no botão de igual ao lado do campo de entrada.
  • Espere aparecer o resultado da derivada. Clique então no botão "Show steps" que fica ao lado do resultado.
  • Pronto! Agora basta estudar o procedimento.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [regra do quociente] ajuda por favor

Mensagempor ricardosanto » Seg Abr 16, 2012 23:14

muto obrigado cara
o site é quase um milagre, muto bom mesmo.
mas se mesmo com a ajuda dele se eu tiver alguma dúvida, eu posso postar aki?
ricardosanto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Seg Abr 16, 2012 12:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia civil
Andamento: cursando

Re: [regra do quociente] ajuda por favor

Mensagempor LuizAquino » Ter Abr 17, 2012 11:06

ricardosanto escreveu:mas se mesmo com a ajuda dele se eu tiver alguma dúvida, eu posso postar aki?


Sim.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}