• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais

Integrais

Mensagempor Guilherme Carvalho » Sex Abr 13, 2012 21:51

Não consegui resolver estas integrais, alguém pode me ajudar.....
\int_{}^{}\frac{{e}^{2x}}{1+{e}^{x}}dx

\int_{0}^{3} \frac{dx}{{x}^{2}-6x+5}


obs: a segunda eu fiz mais mas deu uma resposta diferente da do livro minha resposta deu 1/4 (ln|1/5|)
Guilherme Carvalho
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Mar 03, 2011 12:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Integrais

Mensagempor DanielFerreira » Sex Abr 13, 2012 22:07

\int_{}^{}\frac{e^{2x}}{1 + e^x} dx =

\int_{}^{}\frac{e^x . e^x}{1 + e^x} dx =

Seja:
e^x + 1 = k ======> e^x = k - 1

dk = e^x dx

\int_{}^{}\frac{e^x}{1 + e^x} . e^x dx =

\int_{}^{}\frac{k - 1}{k}dk =

\int_{}^{}\left(1 - \frac{1}{k}\right)dk =

\left[k - ln k \right] =

e^x + 1 - ln (e^x + 1) + c =
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Integrais

Mensagempor Guilherme Carvalho » Sex Abr 13, 2012 22:19

Vlw danjr5
Guilherme Carvalho
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Mar 03, 2011 12:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Integrais

Mensagempor DanielFerreira » Sex Abr 13, 2012 23:41

\int_{0}^{3}\frac{1}{x^2 - 6x + 5} =

\int_{0}^{3}\frac{1}{(x - 1)(x - 5)} =

Façamos:
\frac{1}{(x - 1)(x - 5)} = \frac{A}{(x - 1)} + \frac{B}{(x - 5)}

\frac{1}{(x - 1)(x - 5)} = \frac{A(x - 5) + B(x - 1)}{(x - 1)(x - 5)}

\frac{1}{(x - 1)(x - 5)} = \frac{(A + B)x + (- 5A - B)}{(x - 1)(x - 5)}

resolvendo o sistema:
\begin{vmatrix}
A + B = 0 \\
- 5A - B = 1 
\end

teremos:
A = \frac{- 1}{4}

e

B = \frac{1}{4}

Daí,
a integral será...

\int_{0}^{3}\left(\frac{- 1}{4(x - 1)} + \frac{1}{4(x - 5)} \right) dx =

\frac{1}{4}\int_{0}^{3}\left(\frac{- 1}{(x - 1)} + \frac{1}{(x - 5)} \right) dx =

\left[\frac{- ln |x - 1|}{4} + \frac{ln |x - 5|}{4} \right]_{0}^{3} =

f(3) = \frac{- ln 2}{4} + \frac{ln 2}{4} ====> 0

f(0) = \frac{- ln 1}{4} + \frac{ln 5}{4} ====> \frac{ln 5}{4}

logo,
f(3) - f(0) =

0 - \frac{ln 5}{4} =

- \frac{ln 5}{4}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Integrais

Mensagempor Guilherme Carvalho » Sáb Abr 14, 2012 15:56

danjr5 , acho que tem uma coisa que vc esqueceu de observar, a função e descontinua em x=1...
Guilherme Carvalho
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Mar 03, 2011 12:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Integrais

Mensagempor DanielFerreira » Sáb Abr 14, 2012 20:05

vlw.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59