• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais

Integrais

Mensagempor Guilherme Carvalho » Sex Abr 13, 2012 21:51

Não consegui resolver estas integrais, alguém pode me ajudar.....
\int_{}^{}\frac{{e}^{2x}}{1+{e}^{x}}dx

\int_{0}^{3} \frac{dx}{{x}^{2}-6x+5}


obs: a segunda eu fiz mais mas deu uma resposta diferente da do livro minha resposta deu 1/4 (ln|1/5|)
Guilherme Carvalho
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Mar 03, 2011 12:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Integrais

Mensagempor DanielFerreira » Sex Abr 13, 2012 22:07

\int_{}^{}\frac{e^{2x}}{1 + e^x} dx =

\int_{}^{}\frac{e^x . e^x}{1 + e^x} dx =

Seja:
e^x + 1 = k ======> e^x = k - 1

dk = e^x dx

\int_{}^{}\frac{e^x}{1 + e^x} . e^x dx =

\int_{}^{}\frac{k - 1}{k}dk =

\int_{}^{}\left(1 - \frac{1}{k}\right)dk =

\left[k - ln k \right] =

e^x + 1 - ln (e^x + 1) + c =
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Integrais

Mensagempor Guilherme Carvalho » Sex Abr 13, 2012 22:19

Vlw danjr5
Guilherme Carvalho
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Mar 03, 2011 12:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Integrais

Mensagempor DanielFerreira » Sex Abr 13, 2012 23:41

\int_{0}^{3}\frac{1}{x^2 - 6x + 5} =

\int_{0}^{3}\frac{1}{(x - 1)(x - 5)} =

Façamos:
\frac{1}{(x - 1)(x - 5)} = \frac{A}{(x - 1)} + \frac{B}{(x - 5)}

\frac{1}{(x - 1)(x - 5)} = \frac{A(x - 5) + B(x - 1)}{(x - 1)(x - 5)}

\frac{1}{(x - 1)(x - 5)} = \frac{(A + B)x + (- 5A - B)}{(x - 1)(x - 5)}

resolvendo o sistema:
\begin{vmatrix}
A + B = 0 \\
- 5A - B = 1 
\end

teremos:
A = \frac{- 1}{4}

e

B = \frac{1}{4}

Daí,
a integral será...

\int_{0}^{3}\left(\frac{- 1}{4(x - 1)} + \frac{1}{4(x - 5)} \right) dx =

\frac{1}{4}\int_{0}^{3}\left(\frac{- 1}{(x - 1)} + \frac{1}{(x - 5)} \right) dx =

\left[\frac{- ln |x - 1|}{4} + \frac{ln |x - 5|}{4} \right]_{0}^{3} =

f(3) = \frac{- ln 2}{4} + \frac{ln 2}{4} ====> 0

f(0) = \frac{- ln 1}{4} + \frac{ln 5}{4} ====> \frac{ln 5}{4}

logo,
f(3) - f(0) =

0 - \frac{ln 5}{4} =

- \frac{ln 5}{4}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Integrais

Mensagempor Guilherme Carvalho » Sáb Abr 14, 2012 15:56

danjr5 , acho que tem uma coisa que vc esqueceu de observar, a função e descontinua em x=1...
Guilherme Carvalho
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Mar 03, 2011 12:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Integrais

Mensagempor DanielFerreira » Sáb Abr 14, 2012 20:05

vlw.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.