• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[teoria de limites] dúvida numa questão de prova

[teoria de limites] dúvida numa questão de prova

Mensagempor Fabio Wanderley » Sex Abr 13, 2012 23:38

Olá, colegas

Caiu a seguinte questão na minha prova de Cálculo I:

"Considere o polinômio de grau n, onde n é ímpar, dado por:

p(x) = a_n x^n + a_n_-_1{x}^{n-1}+a_n_-_2{x}^{n-2}+...+a_1x+a_0,

e os a são todos reais. Mostre, usando a teoria de limites, que p(x) admite pelo menos uma raiz real."

Daí eu respondi exatamente assim:

Toda função polinomial é contínua. E de acordo com o Teorema de Bolzano, em um intervalo [a,b] se f(a) e f(b) tiverem sinais contrários, então haverá pelo menos um c em que f(c) = 0.

Pela correção do professor, ele circulou o "f(a)" e o "f(b)" e escreveu "Isso ocorre no polinômio dado?" E a questão foi zerada.

Minha dúvida então é se eu errei por colocar f em vez de p, ou se ela é resolvida corretamente de outra forma.

Desde já agradeço!
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [teoria de limites] dúvida numa questão de prova

Mensagempor MarceloFantini » Sáb Abr 14, 2012 00:05

Não foi pela mera troca de nome da função que você errou, mas sim porque simplesmente não resolveu. Seu raciocínio não está errado, porém pense: você exibiu dois pontos tais que um tenha imagem positiva e outro imagem negativa? A resposta é não.

Como o polinômio tem grau ímpar, temos \lim_{x \to - \infty} p(x) = - \infty enquanto \lim_{x \to +\infty} p(x) = + \infty, logo existem pontos a, b \in \mathbb{R} tais que p(a) < 0 e p(b) > 0 pelo fato que todo polinômio é contínuo. Pelo teorema de Bolzano, segue a conclusão.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [teoria de limites] dúvida numa questão de prova

Mensagempor Fabio Wanderley » Sáb Abr 14, 2012 00:43

Obrigado, Marcelo!

Agora pude ver que realmente não respondi a questão, faltaram os pontos... E eu ainda não havia considerado o "Mostre, usando a teoria de limites(...)"
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.