• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[teoria de limites] dúvida numa questão de prova

[teoria de limites] dúvida numa questão de prova

Mensagempor Fabio Wanderley » Sex Abr 13, 2012 23:38

Olá, colegas

Caiu a seguinte questão na minha prova de Cálculo I:

"Considere o polinômio de grau n, onde n é ímpar, dado por:

p(x) = a_n x^n + a_n_-_1{x}^{n-1}+a_n_-_2{x}^{n-2}+...+a_1x+a_0,

e os a são todos reais. Mostre, usando a teoria de limites, que p(x) admite pelo menos uma raiz real."

Daí eu respondi exatamente assim:

Toda função polinomial é contínua. E de acordo com o Teorema de Bolzano, em um intervalo [a,b] se f(a) e f(b) tiverem sinais contrários, então haverá pelo menos um c em que f(c) = 0.

Pela correção do professor, ele circulou o "f(a)" e o "f(b)" e escreveu "Isso ocorre no polinômio dado?" E a questão foi zerada.

Minha dúvida então é se eu errei por colocar f em vez de p, ou se ela é resolvida corretamente de outra forma.

Desde já agradeço!
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [teoria de limites] dúvida numa questão de prova

Mensagempor MarceloFantini » Sáb Abr 14, 2012 00:05

Não foi pela mera troca de nome da função que você errou, mas sim porque simplesmente não resolveu. Seu raciocínio não está errado, porém pense: você exibiu dois pontos tais que um tenha imagem positiva e outro imagem negativa? A resposta é não.

Como o polinômio tem grau ímpar, temos \lim_{x \to - \infty} p(x) = - \infty enquanto \lim_{x \to +\infty} p(x) = + \infty, logo existem pontos a, b \in \mathbb{R} tais que p(a) < 0 e p(b) > 0 pelo fato que todo polinômio é contínuo. Pelo teorema de Bolzano, segue a conclusão.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [teoria de limites] dúvida numa questão de prova

Mensagempor Fabio Wanderley » Sáb Abr 14, 2012 00:43

Obrigado, Marcelo!

Agora pude ver que realmente não respondi a questão, faltaram os pontos... E eu ainda não havia considerado o "Mostre, usando a teoria de limites(...)"
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}