• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Ângulos numa Circunferência] (UNIFOR-CE/1998)

[Ângulos numa Circunferência] (UNIFOR-CE/1998)

Mensagempor eiji » Sex Abr 13, 2012 20:57

(UNIFOR-CE/1998) Considere a figura abaixo. A medida x do ângulo assinalado é:
Não entendi esse exercício de ângulos numa circunferência, a resposta é 90º.
imagemCi.JPG
imagemCi.JPG (7.92 KiB) Exibido 9795 vezes
Avatar do usuário
eiji
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Abr 13, 2012 20:52
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Ângulos numa Circunferência] (UNIFOR-CE/1998)

Mensagempor Guill » Sex Abr 13, 2012 21:05

Observe que o ângulo AÊC = 180 - 65 = 115º. Além disso, o ângulo BDA divide o mesmo arco com o ângulo de 25º, fazendo com que ele tenha essa mesma medida. Somando os ângulos do triângulo EDX:

25 + 65 + 180 - x = 180

x = 65 + 25 = 90º
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Ângulos numa Circunferência] (UNIFOR-CE/1998)

Mensagempor eiji » Sex Abr 13, 2012 21:28

Guill escreveu:Observe que o ângulo AÊC = 180 - 65 = 115º. Além disso, o ângulo BDA divide o mesmo arco com o ângulo de 25º, fazendo com que ele tenha essa mesma medida. Somando os ângulos do triângulo EDX:

25 + 65 + 180 - x = 180

x = 65 + 25 = 90º


Guill
eu poderia fazer pelo ângulo excêntrico exterior ??
tipo chama o 40º de \alpha e o arco BE = 50º do 25º do C.
dai fica assim \alpha = \frac{CD - BE}{2}

2.40 = CD - 50

80 + 50 = CD

130^\circ = CD

ai vai em B que vai ser 65º e faz por Ângulo\;Externo\,X = Ângulo\;interior\,de\,B + Ângulo\;interior\,de\,C

Ângulo\;Externo\,X = 65^\circ + 25^\circ

Ângulo\;Externo\,X = 90^\circ

Estaria certo também ??
Avatar do usuário
eiji
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Abr 13, 2012 20:52
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.