• Anúncio Global
    Respostas
    Exibições
    Última mensagem

cefet-mg 2012 log

cefet-mg 2012 log

Mensagempor Thulio_Parazi » Ter Abr 10, 2012 14:37

Seja a ? R tal que log2(a – 2) > 2. Tomando-se m = log2(a2 – 4),
então, é correto afirmar que m é
não conseguir desempenhar nada dessa questão.
Não sei o que fazer.
Thulio_Parazi
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Abr 05, 2012 11:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: cefet-mg 2012 log

Mensagempor fraol » Ter Abr 10, 2012 21:03

Note que (a^2 - 4) = (a-2).(a+2)
(esse é um produto notável).

Então m = log_{2} (a^2 -4) = log_{2} (a -2)(a+2) = log_{2} (a -2) + log_{2} (a + 2)
(log do produto é a soma dos logs).

Como log_{2} (a -2) > 2, o que você pode concluir a respeito de m ?

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: cefet-mg 2012 log

Mensagempor Thulio_Parazi » Ter Abr 10, 2012 23:23

fraol escreveu:Note que (a^2 - 4) = (a-2).(a+2)
(esse é um produto notável).

Então m = log_{2} (a^2 -4) = log_{2} (a -2)(a+2) = log_{2} (a -2) + log_{2} (a + 2)
(log do produto é a soma dos logs).

Como log_{2} (a -2) > 2, o que você pode concluir a respeito de m ?

.

M >5 é isso, mas por que?
Não entendi.
Thulio_Parazi
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Abr 05, 2012 11:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: cefet-mg 2012 log

Mensagempor fraol » Qua Abr 11, 2012 00:34

Como log_{2} (a -2) > 2, pela definição de logaritmo você tem que:

a - 2 > 2^2 \iff a > 6

Agora vamos analisar log_{2} (a + 4) = x, como a > 6, então a + 4 > 10.

No pior caso digamos que a + 4 = 10, então

log_{2} (a + 4) = x \iff 10 = 2^x, 10 é aproximadamente 2^{3.3},

Assim 2^x \sim 2^{3.3} \iff x \sim 3.3.

A soma que encontramos, o m contém uma parcela maior do que 2 e uma parcela maior do que 3.3. Portanto m > 5.3 > 5.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: cefet-mg 2012 log

Mensagempor Thulio_Parazi » Qua Abr 11, 2012 12:56

fraol escreveu:Como log_{2} (a -2) > 2, pela definição de logaritmo você tem que:

a - 2 > 2^2 \iff a > 6

Agora vamos analisar log_{2} (a + 4) = x, como a > 6, então a + 4 > 10.

No pior caso digamos que a + 4 = 10, então

log_{2} (a + 4) = x \iff 10 = 2^x, 10 é aproximadamente 2^{3.3},

Assim 2^x \sim 2^{3.3} \iff x \sim 3.3.

A soma que encontramos, o m contém uma parcela maior do que 2 e uma parcela maior do que 3.3. Portanto m > 5.3 > 5.

.

Valeu fraol,Kara você é fera, valeu mesmo de coração pela força e pela moral.
Com sua ajuda estou começando a ter mais esperança em passar.. Um abraço
Thulio_Parazi
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Abr 05, 2012 11:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: cefet-mg 2012 log

Mensagempor Thulio_Parazi » Qui Abr 12, 2012 09:26

Me ajude nessa questão:viewtopic.php?f=111&t=7854
valeu
Thulio_Parazi
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Abr 05, 2012 11:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: