• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duas questões de complexos

Duas questões de complexos

Mensagempor Joseaugusto » Seg Abr 09, 2012 10:43

Olá amigos, travei com esses dois exercicios de complexos, e não encontro resolução na internet. Agradeceria a quem me indicar o caminho a ser seguido para resolve-los


(UFU) A soma das raizes distintas da equação z² + 2R(z) + 1 = 0, onde z é um numero complexo e R(z) denota a parte real de Z é igual a:
R: -1

(ITA) Sejam x e y numeros reais, com x =/= 0 (x diferente de zero), satisfazendo (x + iy)² = (x +y)i. Então:
R: x é raiz da equação x³ + 3x² + 2x - 6
Joseaugusto
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Mar 06, 2012 11:16
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Duas questões de complexos

Mensagempor fraol » Seg Abr 09, 2012 18:46

(1)

z^2 + 2Re(z) + 1 = 0

Seja z = a + bi, com Re(z) = a, então

z^2 + 2Re(z) + 1 = 0 \iff z^2 + 2a + 1 = 0 \iff z^2 = -(2a + 1)

Note que z^2 = a^2 - b^2 + 2abi = -(2a + 1) não possui parte imaginária donde concluímos que b = 0.

Assim

a^2 - b^2 + 2abi + 2a + 1 = 0 => a^2 + 2a + 1 = 0, de onde sai a = -1 ( raiz dupla ).

Portanto a soma das raízes distintas é igual a -1.

(2)

(x + iy)^2 = (x + y)i

x^2 - y^2 + 2xyi = (x + y)i , note que no segundo membro não temos parte real, então

x^2 - y^2 = 0 => x = y.

ou

2xyi = (x + y)i => 2xy = x + y \iff 2x^2 = 2x \iff

x = y = 0 ou x = y = 1.

Comox \ne 0 entãox = 1 (que é a raiz real do polinômio dado).

(Obs. o ideal é que se crie um tópico para cada questão no forum.)

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Duas questões de complexos

Mensagempor Joseaugusto » Ter Abr 10, 2012 09:47

Sou implicado com complexos por causa disso, os exercícios são fáceis... depois que voce aprende como faze-los *-)

obrigado pela ajuda fraol, coloquei as duas questões em um unico post pra não encher demais o forum, na próxima eu faço certo.
Joseaugusto
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Mar 06, 2012 11:16
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Duas questões de complexos

Mensagempor fraol » Ter Abr 10, 2012 10:35

Há matemáticos que dizem que os complexos só o são no nome. Valeu.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)