• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Isso está certo ???

Isso está certo ???

Mensagempor Guill » Dom Abr 08, 2012 18:21

Gostaria de saber se essa forma de resolver a integral é válida:

\int_{}^{}\frac{dx}{senx.cosx}

\int_{}^{}\frac{dx}{tgx.cos^2x}


Considerando tgx = u, teremos dx = du.cos²x:

\int_{}^{}\frac{cos^2x.du}{u.cos^2x}

\int_{}^{}\frac{du}{u} = ln(u)=ln(tgx)+C



Posso resolver dessa forma ?? Se estiver errado, por favor, façam da forma correta.
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Isso está certo ???

Mensagempor nietzsche » Dom Abr 08, 2012 18:57

Não está correto.
"Considerando tgx = u, teremos dx = du.cos²x" : Se u=sex/cos x, então du/dx ? cos²x.
Outra coisa, se você mudou a variável de integração, você precisa trocar todas as variáveis x por alguma função de um, ou seja, x "some" do integrando.
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Isso está certo ???

Mensagempor Guill » Dom Abr 08, 2012 19:00

nietzsche escreveu:Considerando tgx = u, teremos dx = du.cos²x" : Se u=sex/cos x, então du/dx ? cos²x.



Não é mesmo. É por isso que eu acredito que esteja ceto:

Se u=sex/cos x, então du/dx = 1/cos²x
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Isso está certo ???

Mensagempor fraol » Dom Abr 08, 2012 19:04

No meu entendimento a solução de Guill está correta. O que poderia ser complementado é a resposta em termos de senx e cosxpela diferença dos logaritmos.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Isso está certo ???

Mensagempor nietzsche » Dom Abr 08, 2012 19:08

Desculpe, está certo essa passagem:
" "Considerando tgx = u, teremos dx = du.cos²x" : Se u=sen x/cos x, então du/dx ? cos²x. "

É isso mesmo, du/dx = 1/ cos²x.

Mas quando vc muda a variável vc não pode fazer isso:
\int_{}^{}\frac{cos^2x.du}{u.cos^2x}

Não pode aparecer o x, pois contaria o teorema da mudança de variáveis.
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Isso está certo ???

Mensagempor nietzsche » Dom Abr 08, 2012 19:20

Enunciado do teorema a que me refiro:

Let I\subseteq{\mathbb{R}} be an interval and g : [a,b] \to I be a continuously differentiable function. Suppose that f : I\to \mathbb{R} is a continuous function. Then

\int_{g(a)}^{g(b)} f(x)\,dx = \int_a^b f(g(t))g'(t)\, dt.

fonte: http://en.wikipedia.org/wiki/Integratio ... bstitution
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.