• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Rotacional e Divergente

Rotacional e Divergente

Mensagempor thiagodr » Sáb Abr 07, 2012 02:34

Petrobras (2010) cesgranrio
Seja F = (xz, yz, –x²) um campo vetorial em R³ . Analise as declarações a seguir sobre o divergente e o rotacional de F:

I) rot F = (–y, 3x, 0)

II) div F = 2z

III) rot(div F) = 0

Está correto o que se declara em
a) I, apenas.
b) I e II, apenas.
c) I e III, apenas.
d) II e III, apenas.
e) I, II e III.


bem, vemos de cara que I, II estão corretas e a propriedade de que Div F = escalar e Rot ( escalar)=0 a III também está correta, logo a resposta seria a letra: E....

porém a Cesgranrio afirma no seu gabarito, mesmo após os recursos, que a resposta correta é a letra: B. alguém poderia me explicar?
thiagodr
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mar 23, 2012 00:52
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: mestrado em Engenharia Nuclear
Andamento: cursando

Re: Rotacional e Divergente

Mensagempor LuizAquino » Sáb Abr 07, 2012 13:33

thiagodr escreveu:Petrobras (2010) cesgranrio
Seja F = (xz, yz, –x²) um campo vetorial em R³ . Analise as declarações a seguir sobre o divergente e o rotacional de F:

I) rot F = (–y, 3x, 0)

II) div F = 2z

III) rot(div F) = 0

Está correto o que se declara em
a) I, apenas.
b) I e II, apenas.
c) I e III, apenas.
d) II e III, apenas.
e) I, II e III.


thiagodr escreveu:bem, vemos de cara que I, II estão corretas e a propriedade de que Div F = escalar e Rot ( escalar)=0 a III também está correta, logo a resposta seria a letra: E....

porém a Cesgranrio afirma no seu gabarito, mesmo após os recursos, que a resposta correta é a letra: B. alguém poderia me explicar?


O operador rotacional está definido apenas sobre campos vetoriais. Ele não está definido sobre campos escalares. Como div(F) nesse caso é um campo escalar, não está definida a operação rot(div(F)). Em outras palavras, não podemos calcular rot(div(F)).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Rotacional e Divergente

Mensagempor thiagodr » Sáb Abr 07, 2012 16:27

Obrigado, deixei passar isso, acontece.
thiagodr
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mar 23, 2012 00:52
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: mestrado em Engenharia Nuclear
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}