• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Trigonometria

Trigonometria

Mensagempor Regina Moda » Sáb Abr 07, 2012 10:21

Determinar o valor de m para os quais a equaçao 6(m - 1) sin^2(x) - (m - 1)sinx - m=0 possui soluçao
Editado pela última vez por Regina Moda em Sáb Abr 07, 2012 18:54, em um total de 1 vez.
Regina Moda
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Out 14, 2011 18:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: formado

Re: Trigonometria

Mensagempor MarceloFantini » Sáb Abr 07, 2012 18:24

Regina, veja as regras do fórum, em especial a número 2. O "varal" não ajudará em nada neste caso.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Trigonometria

Mensagempor Regina Moda » Sáb Abr 07, 2012 18:43

6(m - 1) sin^2(x) - (m - 1)sinx - m=0 possui solução
Primeiro achei o delta, mas eu vi que o enunciado fala em possiveis soluç~~oes, me de uma luz , por favor
Regina Moda
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Out 14, 2011 18:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: formado

Re: Trigonometria

Mensagempor MarceloFantini » Sáb Abr 07, 2012 18:53

Sem pressa. Qual foi o delta que você encontrou? Lembre-se da regra número 2, use LaTeX para digitar fórmulas. Você não fez isso na sua última postagem. Procure fazer na próxima.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Trigonometria

Mensagempor Regina Moda » Sáb Abr 07, 2012 18:56

MarceloFantini escreveu:Sem pressa. Qual foi o delta que você encontrou? Lembre-se da regra número 2, use LaTeX para digitar fórmulas. Você não fez isso na sua última postagem. Procure fazer na próxima.

? =(m - 1)²+ 4m.(6m -6)

? = m² - 2m + 1 + 24m² -24m

? =25m² - 26m+ 1

? =b² - 4.25.1

? =576
Regina Moda
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Out 14, 2011 18:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: formado

Re: Trigonometria

Mensagempor MarceloFantini » Sáb Abr 07, 2012 19:09

Suas duas últimas linhas não fazem sentido, elas não fazem parte do discriminante original. Você calculou da primeira equação, que é

6(m-1)sen^2(x) - (m-1)sen \, (x) - m=0

encontrando \Delta = (m-1)^2 -4 \cdot 6(m-1) \cdot (-m) = 25m^2 -26m+1. É fundamental agora lembrar que a equação só terá solução se \Delta = 0 ou \Delta > 0. Este é o ponto chave do exercício. Encontre os valores de m que satisfazem isso e o problema estará feito.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Trigonometria

Mensagempor Regina Moda » Sáb Abr 07, 2012 19:14

MarceloFantini escreveu:Suas duas últimas linhas não fazem sentido, elas não fazem parte do discriminante original. Você calculou da primeira equação, que é

6(m-1)sen^2(x) - (m-1)sen \, (x) - m=0

encontrando \Delta = (m-1)^2 -4 \cdot 6(m-1) \cdot (-m) = 25m^2 -26m+1. É fundamental agora lembrar que a equação só terá solução se \Delta = 0 ou \Delta > 0. Este é o ponto chave do exercício. Encontre os valores de m que satisfazem isso e o problema estará feito.


Obrigada!!!! Agora esta mais claro, abraços!!!!!!!!
Regina Moda
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Out 14, 2011 18:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D