• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Pontos Colineares

Pontos Colineares

Mensagempor Claudin » Qui Abr 05, 2012 19:19

Mostre que os pontos (0,1,-1), (1,3,0) e (2,5,1) são colineares.


Também não consegui resolver esse exercício, fiz um com dois pontos, ai fiz uma relação de proporcionalidade entre os pontos e deu certo.

Agora com os três pontos não deu certo.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Pontos Colineares

Mensagempor Lucio Carvalho » Qui Abr 05, 2012 20:06

Olá Claudin,
se os pontos A, B e C são colineares, os vetores AB e BC (nota: falta a seta) terão de ter a mesma direção, ou seja, terão de ser colineares.

vetor AB = B - A = (1,3,0) - (0,1,-1) = (1,2,1)

vetor BC = C - B = (2,5,1) - (1,3,0) = (1,2,1)

Se os vetores têm a mesma direção, existe um \lambda tal que:

vetor AB = \lambda.(vetor BC)

(1,2,1) =\lambda.(1,2,1)

Logo, \lambda=1

Resposta: Os pontos são colineares.
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: Pontos Colineares

Mensagempor LuizAquino » Qui Abr 05, 2012 21:22

Lucio Carvalho escreveu:os vetores AB e BC (nota: falta a seta)


Para inserir as setas (bem como as outras notações matemáticas), use o LaTeX. Por favor, vide o tópico:

DICA: Escrevendo Fórmulas com LaTeX via BBCode
viewtopic.php?f=9&t=74

No caso dos vetores, basicamente há duas formas de inserir as setas.

Forma 1)

Use o código:

Código: Selecionar todos
[tex]\vec{AB}[/tex]


Resultado:

\vec{AB}

Forma 2)

Use o código:

Código: Selecionar todos
[tex]\overrightarrow{AB}[/tex]


Resultado:

\overrightarrow{AB}

Observação

Note que a Forma 1) é mais interessante de ser usada quando temos apenas uma letra em minúsculo: \vec{u} . Já a Forma 2) é mais interessante de ser usada quando temos duas letras em maiúsculo: \overrightarrow{AB} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Pontos Colineares

Mensagempor Claudin » Qui Abr 05, 2012 22:31

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}