• Anúncio Global
    Respostas
    Exibições
    Última mensagem

problema das moedas

problema das moedas

Mensagempor marquessbr » Qua Abr 04, 2012 22:04

tem-se uma moeda hakeada com a probabilidade de 0,6 de dar cara e 0,4 de dar coroa, se acrescentamos uma moeda honesta (probabilidade igual de dar cara ou coroa, ou seja, 0,5 para cada evento), ficamos assim com duas moedas, uma hakeada e outra honesta; pois bem, sabemos que selecionando aleatoriamente uma dessas moedas, isso nos daria a probabilidade de 0,5 de escolhermos uma ou outra, dai lançamos a moeda escolhida duas vezes e nas duas vezes dá cara.
Qual seria a probabilidade de termos pegado a moeda "hakeada"?

alguem pode ajudar com esse problema?

grato
marquessbr
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Abr 04, 2012 06:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Robotica
Andamento: cursando

Re: problema das moedas

Mensagempor Lucio Carvalho » Qui Abr 05, 2012 05:28

Olá marquessbr,
Segue em anexo uma possível ajuda. Penso que o problema diz respeito à probabilidade condicionada e à Regra de Bayes.
Espero que compreendas a apresentação. Evitei as fórmulas!
Adeus
Anexos
Prob.2.PNG
Prob.1.PNG
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: problema das moedas

Mensagempor marquessbr » Qui Abr 05, 2012 09:19

Lucio Carvalho escreveu:Olá marquessbr,
Segue em anexo uma possível ajuda. Penso que o problema diz respeito à probabilidade condicionada e à Regra de Bayes.
Espero que compreendas a apresentação. Evitei as fórmulas!
Adeus


Meu amigo, você tem um lugar reservado, onde quer que Deus tenha guardado lugar para pessoas que ajudam realmente, pode acreditar.
Eu realmente tenho um pouco de dificuldade para esses calculos, sempre preciso de um pouco mais de tempo para assimilar, mas o curso online que estamos fazendo é muito rápido e já tamos no exame final dai ficou realmente a dever um melhor entendimento sobre o tema, muito obrigado.
E sem mudar de pau para cassete, trata-se de um problema muito bem elaborado, concordas?

:y: valeus! :-D

:y: luz e paz! :y:
marquessbr
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Abr 04, 2012 06:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Robotica
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59