• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor jemourafer » Seg Abr 02, 2012 03:19

Como posso resolver uma função trigonométrica com \lim_{x->\infty}?

" Calcule o limite \lim_{x->\infty}\frac{cos^2(x)}{\sqrt[]{x}} "
jemourafer
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Dom Abr 01, 2012 20:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Limite

Mensagempor NMiguel » Seg Abr 02, 2012 07:29

jemourafer escreveu:Como posso resolver uma função trigonométrica com \lim_{x->\infty}?

" Calcule o limite \lim_{x->\infty}\frac{cos^2(x)}{\sqrt[]{x}} "


Para calcular este limite, devemos primeiro enquadrar a função \cosx.

Sabemos que -1 \leq \cos x \leq 1. Então, 0 \leq \cos^{2}x \leq 1.

Daqui sai que \frac{0}{\sqrt{x}} \leq \frac{cos^2(x)}{\sqrt{x}} \leq \frac{1}{\sqrt{x}}.

Aplicando limites, temos:

\lim_{x->\infty} \frac{0}{\sqrt{x}} \leq \lim_{x->\infty} \frac{cos^2(x)}{\sqrt{x}} \leq \lim_{x->\infty} \frac{1}{\sqrt{x}}

Que é equivalente a:

0 \leq \lim_{x->\infty} \frac{cos^2(x)}{\sqrt{x}} \leq 0

E daqui sai que \lim_{x->\infty} \frac{cos^2(x)}{\sqrt{x}} =0
NMiguel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Ter Abr 19, 2011 17:09
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Limite

Mensagempor killerkill » Sex Abr 06, 2012 00:09

Nmiguel. Estava observando os tópicos e encontrei algo que não entendi.
Por que 0\geq{cos}^{2}x\geq1 ?
Boa noite
killerkill
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Ter Ago 09, 2011 22:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Eg. Elétrica
Andamento: cursando

Re: Limite

Mensagempor MarceloFantini » Sex Abr 06, 2012 09:52

Você inverteu a desigualdade, a correta é 0 \leq \cos^2 x \leq 1.Isto acontece pois quando temos \cos x < 0, ou seja, negativo, seu quadrado será positivo, logo \cos^2 x > 0.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite

Mensagempor killerkill » Dom Abr 08, 2012 03:43

Entendi. Obrigado pelo esclarecimento.
killerkill
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Ter Ago 09, 2011 22:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Eg. Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}