• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como resolver esse limite?

Como resolver esse limite?

Mensagempor samra » Sáb Mar 31, 2012 02:38

Ei gente, nn estou conseguindo resolver este limite, qlq forma que eu uso dá indeterminação :oops:
Ajuda pf?

\lim_{t\rightarrow 0}\left(\frac{1}{t}-\frac{1}{{t}^{2}+t} \right)

Ai eu tento resolver assim, mas nn to conseguindo sair do lugar =/
\lim_{t\rightarrow 0}\left(\frac{1}{t}-\frac{1}{{t}^{2}+t} \right)=\lim_{t\rightarrow 0}\left(\frac{(t-1)-1}{{t}^{2}-t} \right) => \lim_{t\rightarrow 0}\left(\frac{(t-2)}{t(t-1)} \right)


?????????????????????
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
samra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sex Jan 27, 2012 11:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Informatica
Andamento: formado

Re: Como resolver esse limite?

Mensagempor LuizAquino » Sáb Mar 31, 2012 12:11

samra escreveu:\lim_{t\rightarrow 0}\left(\frac{1}{t}-\frac{1}{{t}^{2}+t} \right)

Ai eu tento resolver assim, mas nn to conseguindo sair do lugar =/
\lim_{t\rightarrow 0}\left(\frac{1}{t}-\frac{1}{{t}^{2}+t} \right) = \lim_{t\rightarrow 0}\left(\frac{(t-1)-1}{{t}^{2}-t} \right)


Você errou já no primeiro passo.

Você precisa subtrair duas frações, sendo que os seus denominadores são t e t² + t.

No segundo denominador, colocando t em evidência, obtemos t(t + 1).

Devemos então determinar o m. m. c. entre t e t(t + 1). Acontece que o m. m. c. entre essas duas expressões é t(t + 1).

Desse modo, o primeiro passo na resolução do limite será:

\lim_{t\to 0}\left(\frac{1}{t}-\frac{1}{{t}^{2}+t} \right) = \lim_{t\to 0}\left[\frac{(t + 1) - 1}{t(t + 1)}\right]

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Como resolver esse limite?

Mensagempor samra » Dom Abr 01, 2012 12:34

:y:
Editado pela última vez por samra em Dom Abr 01, 2012 12:41, em um total de 2 vezes.
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
samra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sex Jan 27, 2012 11:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Informatica
Andamento: formado

Re: Como resolver esse limite?

Mensagempor samra » Dom Abr 01, 2012 12:40

Eu tentei resolvê-lo aki, só não sei se está certo:
\lim_{t\rightarrow 0}\left(\frac{1}{t} - \frac{1}{{t}^{2}+t} \right)
= \lim_{t\rightarrow 0}\left(\frac{{t}^{2}+t-t}{t({t}^{2}+t)} \right)=
\lim_{t\rightarrow 0}\frac{{t}^{2}}{{t}^{2}(t+1)} = \lim_{t\rightarrow 0}\frac{1}{1}=1

Não sei se está certo, até pq o livro nn tras a resposta do mesmo.
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
samra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sex Jan 27, 2012 11:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Informatica
Andamento: formado

Re: Como resolver esse limite?

Mensagempor fraol » Dom Abr 01, 2012 14:56

O valor 1 para o limite está certo.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.