Tenho que demonstrar se a afirmação a baixo é verdadeira ou não
![0 < a < b \Rightarrow \sqrt[]{a} < \sqrt[]{b} 0 < a < b \Rightarrow \sqrt[]{a} < \sqrt[]{b}](/latexrender/pictures/a08da913f9d95264dd0e0d81e6c935bc.png)
Obrigado.
![0 < a < b \Rightarrow \sqrt[]{a} < \sqrt[]{b} 0 < a < b \Rightarrow \sqrt[]{a} < \sqrt[]{b}](/latexrender/pictures/a08da913f9d95264dd0e0d81e6c935bc.png)

![\sqrt[]{4} < \sqrt[]{9} \sqrt[]{4} < \sqrt[]{9}](/latexrender/pictures/86fa0cb8f595eb52a00f8f7c2f69af53.png)


Well escreveu:Bem,estou tendo um problema com a demonstração matemática, ainda estou aprendendo.
Tenho que demonstrar se a afirmação a baixo é verdadeira ou não
, com a e b números reais positivos.
e
são números positivos (pela definição de raiz quadrada), temos que
é um número positivo.
não é zero. Podemos então dividir toda a inequação anterior por essa soma. Note que a inequação não mudará o seu sentido, pois
é um número positivo. Temos então que:


ednaldo1982 escreveu:0 < 4 < 9![]()

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
o ângulo entre o eixo horizontal e o afixo
. O triângulo é retângulo com catetos
e
, tal que
. Seja
o ângulo complementar. Então
. Como
, o ângulo que o afixo
formará com a horizontal será
, mas negativo pois tem de ser no quarto quadrante. Se
, então
. Como módulo é um:
.
.