• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limite] o cálculo está correto?

[limite] o cálculo está correto?

Mensagempor Fabio Wanderley » Seg Mar 26, 2012 23:21

Cheguei ao resultado do livro, mas gostaria de confirmar se não há algum erro no desenvolvimento.

\lim_{x \to +\infty}\frac{\sqrt[]{x}+\sqrt[3]{x}}{{x}^{2}+ 3}

\lim_{x \to +\infty}\frac{x^\frac{1}{2}+x^\frac{1}{3}}{x^2 + 3}

\lim_{x \to +\infty}\frac{x^\frac{1}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{x^2 + 3x^0}

\lim_{x \to +\infty}\frac{x^\frac{1}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{x^2 . (1 + \frac{3}{x^2})}

\lim_{x \to +\infty}\frac{x^\frac{-3}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{1 + \frac{3}{x^2}}

\lim_{x \to +\infty}\frac{(\frac{1}{x})^\frac{3}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{1 + \frac{3}{x^2}}

(\lim_{x \to +\infty}(\frac{1}{x}))^\frac{3}{2}.\lim_{x \to +\infty}\frac{(1 + \frac{1}{x^\frac{1}{6}})}{1 + \frac{3}{x^2}} = 0 . 1 = 0
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [limite] o cálculo está correto?

Mensagempor LuizAquino » Ter Mar 27, 2012 12:52

Fabio Wanderley escreveu:Cheguei ao resultado do livro, mas gostaria de confirmar se não há algum erro no desenvolvimento.

\lim_{x \to +\infty}\frac{\sqrt[]{x}+\sqrt[3]{x}}{{x}^{2}+ 3}

\lim_{x \to +\infty}\frac{x^\frac{1}{2}+x^\frac{1}{3}}{x^2 + 3}

\lim_{x \to +\infty}\frac{x^\frac{1}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{x^2 + 3x^0}

\lim_{x \to +\infty}\frac{x^\frac{1}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{x^2 . (1 + \frac{3}{x^2})}

\lim_{x \to +\infty}\frac{x^\frac{-3}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{1 + \frac{3}{x^2}}

\lim_{x \to +\infty}\frac{(\frac{1}{x})^\frac{3}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{1 + \frac{3}{x^2}}

(\lim_{x \to +\infty}(\frac{1}{x}))^\frac{3}{2}.\lim_{x \to +\infty}\frac{(1 + \frac{1}{x^\frac{1}{6}})}{1 + \frac{3}{x^2}} = 0 . 1 = 0


Está correto.

Mas você poderia ser mais "econômico" na sua resolução (isto é, usar menos passos). Bastava dividir o numerador e o denominador por x².

\lim_{x \to +\infty}\frac{\left(\sqrt{x}+\sqrt[3]{x}\right) : x^2}{\left({x}^{2}+ 3\right):x^2} = \lim_{x \to +\infty}\frac{\sqrt{\frac{x}{x^4}}+\sqrt[3]{\frac{x}{x^6}}}{1 + \frac{3}{x^2}}

\lim_{x \to +\infty}\frac{\sqrt{\frac{1}{x^3}}+\sqrt[3]{\frac{1}{x^5}}}{1 + \frac{3}{x^2}} = \frac{\sqrt{0} + \sqrt{0}}{1 + 0} = 0
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [limite] o cálculo está correto?

Mensagempor Fabio Wanderley » Ter Mar 27, 2012 14:00

Muito obrigado, professor! Não conhecia esse artifício matemático (operando com raiz).
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59