• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limite] o cálculo está correto?

[limite] o cálculo está correto?

Mensagempor Fabio Wanderley » Seg Mar 26, 2012 23:21

Cheguei ao resultado do livro, mas gostaria de confirmar se não há algum erro no desenvolvimento.

\lim_{x \to +\infty}\frac{\sqrt[]{x}+\sqrt[3]{x}}{{x}^{2}+ 3}

\lim_{x \to +\infty}\frac{x^\frac{1}{2}+x^\frac{1}{3}}{x^2 + 3}

\lim_{x \to +\infty}\frac{x^\frac{1}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{x^2 + 3x^0}

\lim_{x \to +\infty}\frac{x^\frac{1}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{x^2 . (1 + \frac{3}{x^2})}

\lim_{x \to +\infty}\frac{x^\frac{-3}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{1 + \frac{3}{x^2}}

\lim_{x \to +\infty}\frac{(\frac{1}{x})^\frac{3}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{1 + \frac{3}{x^2}}

(\lim_{x \to +\infty}(\frac{1}{x}))^\frac{3}{2}.\lim_{x \to +\infty}\frac{(1 + \frac{1}{x^\frac{1}{6}})}{1 + \frac{3}{x^2}} = 0 . 1 = 0
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [limite] o cálculo está correto?

Mensagempor LuizAquino » Ter Mar 27, 2012 12:52

Fabio Wanderley escreveu:Cheguei ao resultado do livro, mas gostaria de confirmar se não há algum erro no desenvolvimento.

\lim_{x \to +\infty}\frac{\sqrt[]{x}+\sqrt[3]{x}}{{x}^{2}+ 3}

\lim_{x \to +\infty}\frac{x^\frac{1}{2}+x^\frac{1}{3}}{x^2 + 3}

\lim_{x \to +\infty}\frac{x^\frac{1}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{x^2 + 3x^0}

\lim_{x \to +\infty}\frac{x^\frac{1}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{x^2 . (1 + \frac{3}{x^2})}

\lim_{x \to +\infty}\frac{x^\frac{-3}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{1 + \frac{3}{x^2}}

\lim_{x \to +\infty}\frac{(\frac{1}{x})^\frac{3}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{1 + \frac{3}{x^2}}

(\lim_{x \to +\infty}(\frac{1}{x}))^\frac{3}{2}.\lim_{x \to +\infty}\frac{(1 + \frac{1}{x^\frac{1}{6}})}{1 + \frac{3}{x^2}} = 0 . 1 = 0


Está correto.

Mas você poderia ser mais "econômico" na sua resolução (isto é, usar menos passos). Bastava dividir o numerador e o denominador por x².

\lim_{x \to +\infty}\frac{\left(\sqrt{x}+\sqrt[3]{x}\right) : x^2}{\left({x}^{2}+ 3\right):x^2} = \lim_{x \to +\infty}\frac{\sqrt{\frac{x}{x^4}}+\sqrt[3]{\frac{x}{x^6}}}{1 + \frac{3}{x^2}}

\lim_{x \to +\infty}\frac{\sqrt{\frac{1}{x^3}}+\sqrt[3]{\frac{1}{x^5}}}{1 + \frac{3}{x^2}} = \frac{\sqrt{0} + \sqrt{0}}{1 + 0} = 0
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [limite] o cálculo está correto?

Mensagempor Fabio Wanderley » Ter Mar 27, 2012 14:00

Muito obrigado, professor! Não conhecia esse artifício matemático (operando com raiz).
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.