• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Área do trevo

Área do trevo

Mensagempor alfabeta » Dom Mar 18, 2012 23:06

Determine a área do trevo de quatro folhas da figura a seguir sabendo que os arcos são semicircunferências
de diâmetro 8 cm e ABCD é um quadrado de lado 8 cm.

Gostaria de uma dica.
Anexos
trevo.jpg
trevo.jpg (13.93 KiB) Exibido 4039 vezes
alfabeta
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Fev 28, 2012 11:37
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Área do trevo

Mensagempor MarceloFantini » Seg Mar 19, 2012 00:05

Tome o ponto médio de um lado do quadrado. Agora trace um quarto de circunferência e perceba que passa pela folha. Metade da área da folha será dada pelo setor circular menos a área do triângulo isósceles formado. Sabendo isso, encontrar a resposta é fácil.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Área do trevo

Mensagempor Luiz Augusto Prado » Seg Mar 19, 2012 09:40

Imagem
Anexos
trevo3.jpg
Img:
trevo3.jpg (20.04 KiB) Exibido 4029 vezes
Avatar do usuário
Luiz Augusto Prado
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Nov 27, 2009 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Área do trevo

Mensagempor alfabeta » Seg Mar 19, 2012 23:50

Desculpa, mas ainda não entendi.
alfabeta
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Fev 28, 2012 11:37
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}