• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Área do trevo

Área do trevo

Mensagempor alfabeta » Dom Mar 18, 2012 23:06

Determine a área do trevo de quatro folhas da figura a seguir sabendo que os arcos são semicircunferências
de diâmetro 8 cm e ABCD é um quadrado de lado 8 cm.

Gostaria de uma dica.
Anexos
trevo.jpg
trevo.jpg (13.93 KiB) Exibido 4038 vezes
alfabeta
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Fev 28, 2012 11:37
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Área do trevo

Mensagempor MarceloFantini » Seg Mar 19, 2012 00:05

Tome o ponto médio de um lado do quadrado. Agora trace um quarto de circunferência e perceba que passa pela folha. Metade da área da folha será dada pelo setor circular menos a área do triângulo isósceles formado. Sabendo isso, encontrar a resposta é fácil.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Área do trevo

Mensagempor Luiz Augusto Prado » Seg Mar 19, 2012 09:40

Imagem
Anexos
trevo3.jpg
Img:
trevo3.jpg (20.04 KiB) Exibido 4028 vezes
Avatar do usuário
Luiz Augusto Prado
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Nov 27, 2009 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Área do trevo

Mensagempor alfabeta » Seg Mar 19, 2012 23:50

Desculpa, mas ainda não entendi.
alfabeta
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Fev 28, 2012 11:37
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.