por rola09 » Dom Mar 18, 2012 13:40
Já tenho algumas respondidas mas deixo aqui o exercício completo para confirmar e pedir ajuda nas restantes.
Num referencial ortonormado está representado uma pirâmide reta, quadrangular regular de vértice V (3,3,0) e base [ABCD].
- A altura da pirâmide é de 2,5 cm
- A base da pirâmide é paralela ao plano XOY
- O vértice D pertence ao eixo OZ
- O vértice A pertence ao plano XOZ
(um pouco mal desenhado mas dá para perceber)
1 - Identifique as coordenadas dos pontos D, B, C e A.D (0;0;2,5) C (0;6;2,5)
B (6;6;2,5) A (6;0;2,5)
2 - Escreva a equação do plano ABV.Sabendo que a equação do plano é dada por:

Para determinar a equação temos que descobrir o vetor. É isso certo?
3 - Calcule A
B (em graus e minutos).Aqui a única coisa que sei é AB=6 certo?
Tenho algumas dúvidas aqui.
4 - Determine o volume da pirâmide.



Editado pela última vez por
rola09 em Dom Mar 18, 2012 15:53, em um total de 5 vezes.
-
rola09
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Seg Mar 12, 2012 15:56
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Cientifico-Natural
- Andamento: cursando
por LuizAquino » Dom Mar 18, 2012 20:22
rola09 escreveu:Já tenho algumas respondidas mas deixo aqui o exercício completo para confirmar e pedir ajuda nas restantes.
Num referencial ortonormado está representado uma pirâmide reta, quadrangular regular de vértice V (3,3,0) e base [ABCD].
- A altura da pirâmide é de 2,5 cm
- A base da pirâmide é paralela ao plano XOY
- O vértice D pertence ao eixo OZ
- O vértice A pertence ao plano XOZ
(um pouco mal desenhado mas dá para perceber)

- Tri_ngulo.jpg (3.41 KiB) Exibido 2746 vezes
Na sua figura está faltando apenas o segmento DV.
rola09 escreveu:1 - Identifique as coordenadas dos pontos D, B, C e A.
D (0;0;2,5) C (0;6;2,5)
B (6;6;2,5) A (6;0;2,5)
Ok.
rola09 escreveu:2 - Escreva a equação do plano ABV.Sabendo que a equação do plano é dada por:

Para determinar a equação temos que descobrir o vetor. É isso certo?
Esse é um caminho: descobrir o vetor normal ao plano.
Para descobrir o vetor normal ao plano, você pode calcular o produto vetorial:

Lembre-se que:



Agora termine a partir daí.
rola09 escreveu:3 - Calcule A
B (em graus e minutos).Aqui a única coisa que sei é AB=6 certo?
Tenho algumas dúvidas aqui.
Para calcular o ângulo

, use a relação abaixo:

Lembrando que

e

você já calculou no quesito anterior.
Agora termine a partir daí.
rola09 escreveu:4 - Determine o volume da pirâmide.



Ok.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por rola09 » Dom Mar 18, 2012 21:34
LuizAquino escreveu:rola09 escreveu:3 - Calcule A
B (em graus e minutos).Aqui a única coisa que sei é AB=6 certo?
Tenho algumas dúvidas aqui.
Para calcular o ângulo

, use a relação abaixo:

Lembrando que

e

você já calculou no quesito anterior.
Agora termine a partir daí.
Será isto:



LuizAquino escreveu:rola09 escreveu:2 - Escreva a equação do plano ABV.Sabendo que a equação do plano é dada por:

Para determinar a equação temos que descobrir o vetor. É isso certo?
Esse é um caminho: descobrir o vetor normal ao plano.
Para descobrir o vetor normal ao plano, você pode calcular o produto vetorial:

Lembre-se que:



Agora termine a partir daí.
Em relação a este, não estou a perceber como fazer, mas penso que já deva estar saturado com tanta pergunta.
-
rola09
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Seg Mar 12, 2012 15:56
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Cientifico-Natural
- Andamento: cursando
por LuizAquino » Dom Mar 18, 2012 21:53
rola09 escreveu:LuizAquino escreveu:Para calcular o ângulo

, use a relação abaixo:

Lembrando que

e

você já calculou no quesito anterior.
Agora termine a partir daí.
Será isto:



É por aí. Lembrando que as reticências (isto é, "...") serão substituídas pelos cálculos adequados.
rola09 escreveu:LuizAquino escreveu:Esse é um caminho: descobrir o vetor normal ao plano.
Para descobrir o vetor normal ao plano, você pode calcular o produto vetorial:

Lembre-se que:



Agora termine a partir daí.
Em relação a este, não estou a perceber como fazer, mas penso que já deva estar saturado com tanta pergunta.
Você sabe calcular o determinante de uma matriz?
Após calcular o determinante da matriz acima, você irá encontrar uma resposta do tipo:
Ou seja, você terá que o vetor normal ao plano será:

A partir disso, escolhendo um ponto pelo qual o plano irá passar (por exemplo, V = (3; 3; 0)), você pode montar a equação do plano através de:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por rola09 » Dom Mar 18, 2012 22:51
Eu não estudo matemática à uns anos e estou a agora a tentar estudar para fazer um exame para terminar a minha escolaridade.
Não me lembro de muita coisa e devido à minha profissão tenho que me sujeitar a estudar sozinho.
Coloquei as reticências porque ainda não consegui chegar aos cálculos corretos dessas raizes.
Mais uma vez quero agradecer a atenção que tem tido e pedir desculpa por qualquer inconveniente
-
rola09
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Seg Mar 12, 2012 15:56
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Cientifico-Natural
- Andamento: cursando
por LuizAquino » Seg Mar 19, 2012 00:18
rola09 escreveu:Eu não estudo matemática à uns anos e estou a agora a tentar estudar para fazer um exame para terminar a minha escolaridade.
Não me lembro de muita coisa e devido à minha profissão tenho que me sujeitar a estudar sozinho.
Coloquei as reticências porque ainda não consegui chegar aos cálculos corretos dessas raizes.
Mais uma vez quero agradecer a atenção que tem tido e pedir desculpa por qualquer inconveniente
Você não tem que pedir desculpa. Não há inconveniente algum.
Quanto as raízes, o correto é:


Quanto ao determinante da matriz, eu recomendo que você assista a seguinte videoaula do Nerckie: "Matemática - Aula 20 - Determinantes". Essa videoaula está disponível no canal dele no YouTube:
http://www.youtube.com/nerckieApós assistir a videoaula, tente calcular o determinante. Se tiver alguma dúvida, volte a postar aqui.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria Espacial - Pirâmide] Pirâmide de Cartolina
por raimundoocjr » Qui Ago 02, 2012 22:13
- 1 Respostas
- 2608 Exibições
- Última mensagem por MarceloFantini

Qui Ago 02, 2012 23:04
Geometria Espacial
-
- Geometria Analitica Volume da piramide
por Diego Silva » Sex Ago 02, 2013 23:39
- 1 Respostas
- 4067 Exibições
- Última mensagem por mecfael

Dom Ago 18, 2013 22:58
Geometria Analítica
-
- piramide
por Gir » Ter Set 22, 2009 12:01
- 2 Respostas
- 2741 Exibições
- Última mensagem por Gir

Qua Set 23, 2009 11:02
Geometria Espacial
-
- Pirâmide
por renataf » Seg Nov 29, 2010 10:06
- 3 Respostas
- 4409 Exibições
- Última mensagem por fttofolo

Seg Nov 29, 2010 11:09
Geometria Espacial
-
- Pirâmide
por Ani » Dom Dez 05, 2010 15:12
- 4 Respostas
- 3363 Exibições
- Última mensagem por Elcioschin

Sex Dez 10, 2010 21:42
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.