• Anúncio Global
    Respostas
    Exibições
    Última mensagem

função simples de derivada

função simples de derivada

Mensagempor miumatos » Dom Mar 18, 2012 13:06

Bom dia pessoal, preciso de uma ajuda para entender a seguinte função:
(fg)"= gf"+2f'g'+fg"

sei que o resultado é f"g+2f'g'+fg e a questão pede para provar derivando até a segunda ordem que uma é igual a outra.
já entendo como derivar com numeros mas não consegui associar com este tipo de função.

Agradeço desde já.
miumatos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mar 18, 2012 12:33
Formação Escolar: GRADUAÇÃO
Área/Curso: sistemas de informação
Andamento: cursando

Re: função simples de derivada

Mensagempor LuizAquino » Dom Mar 18, 2012 13:18

miumatos escreveu:Bom dia pessoal, preciso de uma ajuda para entender a seguinte função:
(fg)"= gf"+2f'g'+fg"

sei que o resultado é f"g+2f'g'+fg e a questão pede para provar derivando até a segunda ordem que uma é igual a outra.
já entendo como derivar com numeros mas não consegui associar com este tipo de função.


Você deseja calcular a segunda derivada do produto entre duas funções. Isto é, você deseja calcular (fg)^{\prime\prime} .

Efetuar esse cálculo é o mesmo que fazer [(fg)^{\prime}]^{\prime} .

Aplicando a regra do produto para derivadas, temos que:

(fg)^{\prime} = f^\prime g + f g^\prime

Sendo assim, temos que:

(fg)^{\prime\prime} = [(fg)^{\prime}]^{\prime}

(fg)^{\prime\prime} = (f^\prime g + f g^\prime)^{\prime}

Aplicando agora a regra da soma para derivadas, temos que:

(fg)^{\prime\prime}  = (f^\prime g)^\prime + (f g^\prime)^{\prime}

Aplicando novamente a regra do produto para derivadas, temos que:

(fg)^{\prime\prime}  = [(f^\prime)^\prime g  + f^\prime g^\prime] + [f^\prime g^\prime + f (g^\prime)^\prime]

(fg)^{\prime\prime}  = f^{\prime\prime} g  + 2f^\prime g^\prime + f g^{\prime\prime}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: função simples de derivada

Mensagempor miumatos » Dom Mar 18, 2012 15:29

:y:
ok, entendi.
Muito obrigado.
miumatos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mar 18, 2012 12:33
Formação Escolar: GRADUAÇÃO
Área/Curso: sistemas de informação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.