• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Raíz da função] Dois métodos com resultados diferentes

[Raíz da função] Dois métodos com resultados diferentes

Mensagempor char0 » Qui Mar 15, 2012 00:36

Olá a todos. É minha primeira postagem no fórum, acabei de me registrar e parece que vou frequentá-lo bastante daqui para frente! Ingressei esse ano na faculdade de Ciências da Computação e, como a maioria sabe, esse curso possui muitas matérias que envolve matemática. Mas enfim, vou à minha dúvida:

A seguinte função y=(4-3x)/2 foi dada e é pedido para encontrar a raíz dela.
Para fazer isso posso zerar a função para encontrar o x, fazendo (4-3x)/2=0.
Com esse método obtive x=4/3. Até aí tudo bem, é o valor correto para esboçar o gráfico.
(4-3x)/2=0
4-3x=0*2
3x=4
x=4/3

Mas ainda há outro método para encontrar a raíz, utilizando a seguinte fórmula: -b/a.
Com este método, obtive um valor totalmente diferente do anterior. Veja bem:
(-(-3)/2)/(4/2)
(3/2)/(4/2)
3/2*2/4
6/8=3/4

Daí obtive o valor 3/4, que é diferente de 4/3. Fiquei bastante confuso ao esboçar o gráfico da função, mas utilizei do programa winplot para verificar como ficaria e a raíz correta é 4/3.
Estou errando em algum passo no desenvolvimento ao utilizar a fórmula -b/a?

Agradeço desde já a ajuda!
char0
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mar 15, 2012 00:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando

Re: [Raíz da função] Dois métodos com resultados diferentes

Mensagempor MarceloFantini » Qui Mar 15, 2012 01:01

Não pense em fórmulas, isso confunde e mostra que quando usou o raciocínio chegou à resposta correta. Essa "fórmula" parte do princípio que você use a reta como y=ax+b. Neste caso, b = 4 e a = -3. Daí, - \frac{b}{a} = - \frac{4}{-3} = \frac{4}{3}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Raíz da função] Dois métodos com resultados diferentes

Mensagempor char0 » Qui Mar 15, 2012 01:18

Perfeito! Muito obrigado, Marcelo.
char0
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mar 15, 2012 00:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.