• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[trigonometria]Regra de sinais

[trigonometria]Regra de sinais

Mensagempor samra » Qua Mar 07, 2012 11:33

Pergunta: Determinar o sinal do produto
P=sen56°. cos123°.sen199°.cos301°

Resolução:
Os arcos trigonométricos de medidas 56°, 123°, 199° e 301° tem extremidades no 1º,2º,3° e 4° quadrantes, respectivamente. Logo, da variação dos sinais do seno e do cosseno na circunferência trigonométrica, temos:
sen56°>0; cos123°<0; sen199°<0 e cos 301° >0
Logo, pela regra de sinais concluímos que p>0.

A QUE REGRA DE SINAIS O AUTOR DA RESOLUÇÃO SE REFERE?
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
samra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sex Jan 27, 2012 11:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Informatica
Andamento: formado

Re: [trigonometria]Regra de sinais

Mensagempor LuizAquino » Qua Mar 07, 2012 12:24

samra escreveu:Pergunta: Determinar o sinal do produto
P=sen56°. cos123°.sen199°.cos301°

Resolução:
Os arcos trigonométricos de medidas 56°, 123°, 199° e 301° tem extremidades no 1º,2º,3° e 4° quadrantes, respectivamente. Logo, da variação dos sinais do seno e do cosseno na circunferência trigonométrica, temos:
sen56°>0; cos123°<0; sen199°<0 e cos 301° >0
Logo, pela regra de sinais concluímos que p>0.

A QUE REGRA DE SINAIS O AUTOR DA RESOLUÇÃO SE REFERE?


Nesse contexto, "Regra de Sinais" é o mesmo que "Jogo de Sinais":

(+)\cdot (+) = (+)

(+)\cdot (-) = (-)

(-)\cdot (-) = (+)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.