por samra » Qua Mar 07, 2012 11:33
Pergunta: Determinar o sinal do produto
P=sen56°. cos123°.sen199°.cos301°
Resolução:
Os arcos trigonométricos de medidas 56°, 123°, 199° e 301° tem extremidades no 1º,2º,3° e 4° quadrantes, respectivamente. Logo, da variação dos sinais do seno e do cosseno na circunferência trigonométrica, temos:
sen56°>0; cos123°<0; sen199°<0 e cos 301° >0
Logo, pela regra de sinais concluímos que p>0.
A QUE REGRA DE SINAIS O AUTOR DA RESOLUÇÃO SE REFERE?
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
-
samra
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sex Jan 27, 2012 11:31
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Técnico em Informatica
- Andamento: formado
por LuizAquino » Qua Mar 07, 2012 12:24
samra escreveu:Pergunta: Determinar o sinal do produto
P=sen56°. cos123°.sen199°.cos301°
Resolução:
Os arcos trigonométricos de medidas 56°, 123°, 199° e 301° tem extremidades no 1º,2º,3° e 4° quadrantes, respectivamente. Logo, da variação dos sinais do seno e do cosseno na circunferência trigonométrica, temos:
sen56°>0; cos123°<0; sen199°<0 e cos 301° >0
Logo, pela regra de sinais concluímos que p>0.
A QUE REGRA DE SINAIS O AUTOR DA RESOLUÇÃO SE REFERE?
Nesse contexto, "Regra de Sinais" é o mesmo que "Jogo de Sinais":



-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- sinais
por jose henrique » Qua Ago 25, 2010 22:28
- 1 Respostas
- 862 Exibições
- Última mensagem por Molina

Qua Ago 25, 2010 23:17
Álgebra Elementar
-
- Regra de Sinais
por manoelcarlos » Seg Set 23, 2013 00:12
- 1 Respostas
- 884 Exibições
- Última mensagem por Russman

Seg Set 23, 2013 08:20
Funções
-
- [Integral por substituição]: sinais do denominador
por Caroline Oliveyra » Dom Set 04, 2011 13:51
- 3 Respostas
- 2270 Exibições
- Última mensagem por LuizAquino

Dom Set 04, 2011 21:00
Cálculo: Limites, Derivadas e Integrais
-
- estudo de sinais de uma equação de 3º grau
por ygor_macabu » Ter Mai 01, 2012 02:00
- 1 Respostas
- 6986 Exibições
- Última mensagem por Guill

Ter Mai 01, 2012 09:12
Polinômios
-
- [Dúvidas em inequações] Resolução por quadro de sinais.
por rogeriomingoranci » Dom Fev 17, 2013 13:50
- 2 Respostas
- 2240 Exibições
- Última mensagem por R0nny

Sáb Mai 04, 2013 13:24
Inequações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.