• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como integrar esta função?

Como integrar esta função?

Mensagempor Ibraim » Ter Mar 06, 2012 17:19

Boa tarde pessoal. Sou novo no fórum, qualquer problema com o tópico, por favor me avisem.
Necessito integrar a função da velocidade de um corpo em um fluido viscoso. Fazendo os cáculos, chegamos na seguinte equação: Imagem

Ele chega na seguinte equação:

Imagem

Porém preciso saber como ele fez isto. Se alguém puder ajudar, agradeço!

Obrigado!
Ibraim
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Mar 06, 2012 17:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Como integrar esta função?

Mensagempor MarceloFantini » Ter Mar 06, 2012 17:40

Aqui estão os passos:

\frac{dx}{dt} = - \frac{2 \rho g x_0^{\frac{2}{3}} R^2}{9 \eta x^{\frac{2}{3}}},

daí multiplique por x^{\frac{2}{3}} e coloque dt do lado direito. Logo:

x^{\frac{2}{3}} \, dx = \frac{2 \rho g x_0^{\frac{2}{3}} R^2}{9 \eta} \, dt.

Basta integrar. Como no lado direito a variável t não aparece, o resto é considerado constante e é colocado fora da integral.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Como integrar esta função?

Mensagempor Ibraim » Ter Mar 06, 2012 19:00

Perfeito! Consegui chegar no mesmo resultado, parecia complicado mas era simples.

Obrigado!!!
Ibraim
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Mar 06, 2012 17:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.