• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação - Problema

Equação - Problema

Mensagempor ginrj » Qui Jun 11, 2009 15:52

opa, estava fazendo uns exercicios e me deparei com uma questao que me gerou grande duvida.

é do COlegio Naval de 1997

O aluno Mauro, da 8° série de um certo colégio, para resolver a equação: x{}^{4} - x{}^{2} + 2x - 1=0 , no conjunto dos números reais, observou que x{}^{4} = x{}^{2} - 2x + 1 e que o segundo membro da equação é um produto notável. Desse modo, concluiu que (2x + 1){}^{2} é igual a:

(a) 3
(b) 4
(c) 5
(d) 6
(e) 7


ja identifiquei o produto notavel, ja refiz a equação inumeras vezes e nao cheguei a nenhum resultado listado acima, tambem nao entendi a parte final do problema ^^, 2x+1^2 , gostaria de uma ajudinha =D, para eu conseguir resolver o problema, vlww grande abraço
Os números governam o Universo
ginrj
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Sex Mar 06, 2009 18:28
Localização: Rio de Janeiro
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Pré.Militar
Andamento: cursando

Re: Equação - Problema

Mensagempor Cleyson007 » Qui Jun 11, 2009 16:29

Boa tarde Ginrj!

Estou resolvendo e encontrando a alternativa b como resposta. *-)

Só que estou calculando ({-2x+1})^{2}. Confira se a questão foi digitada corretamente.

:idea: Você tem o gabarito da questão?

Se tiver o gabarito, coloque a alternativa correta no fórum, a fim de facilitar a vida de quem se dispõe a ajudá-lo.

Até mais.

Um abraço.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Equação - Problema

Mensagempor ginrj » Qui Jun 11, 2009 17:24

no gabarito diz letra C, numero 5, eu calculei com o sinal oposto tbm, nenhum da 5 , Vlww abç
Os números governam o Universo
ginrj
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Sex Mar 06, 2009 18:28
Localização: Rio de Janeiro
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Pré.Militar
Andamento: cursando

Re: Equação - Problema

Mensagempor Molina » Qui Jun 11, 2009 19:38

Deixa eu ver se entendi.

Ele disse que x^2-2x+1=(2x+1)^2

Se for isso acho que está errado, pois na verdade x^2-2x+1=(x-1)^2


E agora, qual o próximo passo? :-O
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Equação - Problema

Mensagempor Cleyson007 » Qui Jun 11, 2009 22:37

Boa noite!

Agora entendi o problema. Vejamos:

O polinômio é o seguinte: {x}^{4}= {x}^{2}-2x+1=0. Desenvolvendo fica assim:

({x}^{2})^2= {x-1}^{2} --> ({x}^{2})^2-({x-1})^{2}=0. Por diferença de dois quadrados temos:

[{x}^{2}-(x-1)][{x}^{2}+(x-1)]=0 --> [{x}^{2}-x+1][{x}^{2}+x-1]=0

Note que somente o lado direito da igualdade atende as condições do problema (números reais).

{x}^{2}+x-1=0 -->x=\frac{-1+\sqrt[2]{5}}{2}

2x=-1+\sqrt[2]{5}

Elvevando ambos os lados ao quadrado, obtemos: ({2x+1})^{2}=5

Até mais.

Um abraço.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Equação - Problema

Mensagempor ginrj » Sáb Jun 13, 2009 18:34

cleyson e molina, quando chegar em casa vou tentar resolver, ^^ cheguei na parte do -1+raiz de 5 sobre 2 mais nao pensei em elevar os dois termos ao quadrado =p, vlwww aii pessoall :-D
Os números governam o Universo
ginrj
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Sex Mar 06, 2009 18:28
Localização: Rio de Janeiro
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Pré.Militar
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.