• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Espacial

Geometria Espacial

Mensagempor Rosana Vieira » Sáb Mar 03, 2012 01:15

Olá estou com dúvida na resolução deste exercício
Considere um feixe de planos paralelos e duas retas que os interseccionam. Mostre que esses planos determinam, nas duas retas, segmentos proporcionais. (Um análogo ao Teorema de Tales para retas e planos no espaço).
Rosana Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 74
Registrado em: Qui Nov 17, 2011 00:11
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Geometria Espacial

Mensagempor timoteo » Sáb Mar 03, 2012 15:35

primeiro temos que provar que uma reta em um feixe de paralelas é proporcional, e depois temos que provar que outra reta que tbm esteja no mesmo feixe é proporcional, utilizando o teorema de tales.

temos dois casos a considerar onde os planos tem a mesma distancia e onde os planos tem distancias diferentes. a prova que fiz foi no primeiro caso. mas, para realiza-la no segundo caso é so dividir os planos por novos planos onde a unidade entre os mesmos seja igual a u. dai fica obvio.

a segunda imagem é a primeira prova.

e a primeira imagem é a segunda prova, a legenda nao saiu entao vou coloca-la aqui.

obs: o simbolo " ~ " significa proporçao, (ainda estou aprendendo a utilizar o sistema.)

"Ficamos com t - AB e y ~ BC. Logo, t/y = AB/BC. Se observarmos que os triângulos y EF = t DE ? t/y = EF/DE, substituindo t/y = AB/BC, temos: AB/BC = EF/DE."
Anexos
prova por tales_html_29d82846.gif
prova por tales_html_29d82846.gif (6.93 KiB) Exibido 5103 vezes
Sem título 1_html_m633ec197.gif
timoteo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 117
Registrado em: Ter Fev 14, 2012 07:07
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharel matemática
Andamento: cursando

Re: Geometria Espacial

Mensagempor Rosana Vieira » Sáb Mar 03, 2012 18:48

Obrigado Timoteo pela ajuda
Rosana Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 74
Registrado em: Qui Nov 17, 2011 00:11
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Geometria Espacial

Mensagempor Star » Seg Mar 05, 2012 15:13

timoteo escreveu:primeiro temos que provar que uma reta em um feixe de paralelas é proporcional, e depois temos que provar que outra reta que tbm esteja no mesmo feixe é proporcional, utilizando o teorema de tales.

temos dois casos a considerar onde os planos tem a mesma distancia e onde os planos tem distancias diferentes. a prova que fiz foi no primeiro caso. mas, para realiza-la no segundo caso é so dividir os planos por novos planos onde a unidade entre os mesmos seja igual a u. dai fica obvio.

a segunda imagem é a primeira prova.

e a primeira imagem é a segunda prova, a legenda nao saiu entao vou coloca-la aqui.

obs: o simbolo " ~ " significa proporçao, (ainda estou aprendendo a utilizar o sistema.)

"Ficamos com t - AB e y ~ BC. Logo, t/y = AB/BC. Se observarmos que os triângulos y EF = t DE ? t/y = EF/DE, substituindo t/y = AB/BC, temos: AB/BC = EF/DE."




Olá Timoteo,

Não entendi o motivo de você fazer t/y = EF/DE ao envés de t/y = DE/EF e t/y = AB/BC ? DE/EF = AB/BC.

Desde já agradeço.
Star
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 07, 2011 22:08
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Geometria Espacial

Mensagempor timoteo » Seg Mar 05, 2012 19:58

Star, y EF = t DE , multiplicando y aos dois lados temos: y/y EF= t/y DE e multiplicando 1/DE aos dois membros temos: EF/DE = t/y. essas operaçoes nao atrapalham em nada a operaçao final. a segunda parte faz-se por substituiçao. afinal tudo é uma iguladade.

Star, aconselho vc a revisar as bases matematicas, eu indico os livros de Bonjorno e Castruci 5ª a 8ª.
timoteo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 117
Registrado em: Ter Fev 14, 2012 07:07
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharel matemática
Andamento: cursando

Re: Geometria Espacial

Mensagempor Star » Ter Mar 06, 2012 15:28

timoteo escreveu:Star, y EF = t DE , multiplicando y aos dois lados temos: y/y EF= t/y DE e multiplicando 1/DE aos dois membros temos: EF/DE = t/y. essas operaçoes nao atrapalham em nada a operaçao final. a segunda parte faz-se por substituiçao. afinal tudo é uma iguladade.

Star, aconselho vc a revisar as bases matematicas, eu indico os livros de Bonjorno e Castruci 5ª a 8ª.


Timoteo, o fato de não ter entendido o motivo de você fazer isso não tem nada a ver com o meu grau de entendimento, pois usar propriedades em razão e proporção eu sei muito bem. Você é que não entendeu que o enunciado pede que provemos que segmentos correspondentes são proporcionais e não quer que apliquemos propriedades de razão e proporção. Mas deixa pra lá você é da área de matemática aplicada e não da matemática pura este exercício é um consequência da demonstração do teorema de Tales e demonstrações precisam de rigor e objetivo e não ficar fazendo razões e proporções que são as aplicações do teorema.
Sem mais.
Star
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 07, 2011 22:08
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Geometria Espacial

Mensagempor Star » Ter Mar 06, 2012 15:51

Timóte, mas se você for um pouquinho mais humilde dê uma olhada o que o teorema de Tales diz e você vai ver que até nas propriedades de razão e proporção que você tanto "acha" que domina tem erros pois os segmentos t e DE são correspondentes e você montou a razão colocando t correspondente a EF.
http://www.brasilescola.com/matematica/teorema-tales.htm
Sem mais.
Star
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 07, 2011 22:08
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Geometria Espacial

Mensagempor Star » Ter Mar 06, 2012 15:58

E outra coisa se você usar a proporção para seguimentos correspondentes não será necessário provar para os dois casos que você cita, pois o teorema de Tales é generaliza e não supões duas situações uma onde o plano está a uma distância igual e outra em distâncias diferentes.
Sem mais.
Star
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 07, 2011 22:08
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D