• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Espacial

Geometria Espacial

Mensagempor Rosana Vieira » Sáb Mar 03, 2012 01:15

Olá estou com dúvida na resolução deste exercício
Considere um feixe de planos paralelos e duas retas que os interseccionam. Mostre que esses planos determinam, nas duas retas, segmentos proporcionais. (Um análogo ao Teorema de Tales para retas e planos no espaço).
Rosana Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 74
Registrado em: Qui Nov 17, 2011 00:11
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Geometria Espacial

Mensagempor timoteo » Sáb Mar 03, 2012 15:35

primeiro temos que provar que uma reta em um feixe de paralelas é proporcional, e depois temos que provar que outra reta que tbm esteja no mesmo feixe é proporcional, utilizando o teorema de tales.

temos dois casos a considerar onde os planos tem a mesma distancia e onde os planos tem distancias diferentes. a prova que fiz foi no primeiro caso. mas, para realiza-la no segundo caso é so dividir os planos por novos planos onde a unidade entre os mesmos seja igual a u. dai fica obvio.

a segunda imagem é a primeira prova.

e a primeira imagem é a segunda prova, a legenda nao saiu entao vou coloca-la aqui.

obs: o simbolo " ~ " significa proporçao, (ainda estou aprendendo a utilizar o sistema.)

"Ficamos com t - AB e y ~ BC. Logo, t/y = AB/BC. Se observarmos que os triângulos y EF = t DE ? t/y = EF/DE, substituindo t/y = AB/BC, temos: AB/BC = EF/DE."
Anexos
prova por tales_html_29d82846.gif
prova por tales_html_29d82846.gif (6.93 KiB) Exibido 5097 vezes
Sem título 1_html_m633ec197.gif
timoteo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 117
Registrado em: Ter Fev 14, 2012 07:07
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharel matemática
Andamento: cursando

Re: Geometria Espacial

Mensagempor Rosana Vieira » Sáb Mar 03, 2012 18:48

Obrigado Timoteo pela ajuda
Rosana Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 74
Registrado em: Qui Nov 17, 2011 00:11
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Geometria Espacial

Mensagempor Star » Seg Mar 05, 2012 15:13

timoteo escreveu:primeiro temos que provar que uma reta em um feixe de paralelas é proporcional, e depois temos que provar que outra reta que tbm esteja no mesmo feixe é proporcional, utilizando o teorema de tales.

temos dois casos a considerar onde os planos tem a mesma distancia e onde os planos tem distancias diferentes. a prova que fiz foi no primeiro caso. mas, para realiza-la no segundo caso é so dividir os planos por novos planos onde a unidade entre os mesmos seja igual a u. dai fica obvio.

a segunda imagem é a primeira prova.

e a primeira imagem é a segunda prova, a legenda nao saiu entao vou coloca-la aqui.

obs: o simbolo " ~ " significa proporçao, (ainda estou aprendendo a utilizar o sistema.)

"Ficamos com t - AB e y ~ BC. Logo, t/y = AB/BC. Se observarmos que os triângulos y EF = t DE ? t/y = EF/DE, substituindo t/y = AB/BC, temos: AB/BC = EF/DE."




Olá Timoteo,

Não entendi o motivo de você fazer t/y = EF/DE ao envés de t/y = DE/EF e t/y = AB/BC ? DE/EF = AB/BC.

Desde já agradeço.
Star
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 07, 2011 22:08
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Geometria Espacial

Mensagempor timoteo » Seg Mar 05, 2012 19:58

Star, y EF = t DE , multiplicando y aos dois lados temos: y/y EF= t/y DE e multiplicando 1/DE aos dois membros temos: EF/DE = t/y. essas operaçoes nao atrapalham em nada a operaçao final. a segunda parte faz-se por substituiçao. afinal tudo é uma iguladade.

Star, aconselho vc a revisar as bases matematicas, eu indico os livros de Bonjorno e Castruci 5ª a 8ª.
timoteo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 117
Registrado em: Ter Fev 14, 2012 07:07
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharel matemática
Andamento: cursando

Re: Geometria Espacial

Mensagempor Star » Ter Mar 06, 2012 15:28

timoteo escreveu:Star, y EF = t DE , multiplicando y aos dois lados temos: y/y EF= t/y DE e multiplicando 1/DE aos dois membros temos: EF/DE = t/y. essas operaçoes nao atrapalham em nada a operaçao final. a segunda parte faz-se por substituiçao. afinal tudo é uma iguladade.

Star, aconselho vc a revisar as bases matematicas, eu indico os livros de Bonjorno e Castruci 5ª a 8ª.


Timoteo, o fato de não ter entendido o motivo de você fazer isso não tem nada a ver com o meu grau de entendimento, pois usar propriedades em razão e proporção eu sei muito bem. Você é que não entendeu que o enunciado pede que provemos que segmentos correspondentes são proporcionais e não quer que apliquemos propriedades de razão e proporção. Mas deixa pra lá você é da área de matemática aplicada e não da matemática pura este exercício é um consequência da demonstração do teorema de Tales e demonstrações precisam de rigor e objetivo e não ficar fazendo razões e proporções que são as aplicações do teorema.
Sem mais.
Star
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 07, 2011 22:08
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Geometria Espacial

Mensagempor Star » Ter Mar 06, 2012 15:51

Timóte, mas se você for um pouquinho mais humilde dê uma olhada o que o teorema de Tales diz e você vai ver que até nas propriedades de razão e proporção que você tanto "acha" que domina tem erros pois os segmentos t e DE são correspondentes e você montou a razão colocando t correspondente a EF.
http://www.brasilescola.com/matematica/teorema-tales.htm
Sem mais.
Star
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 07, 2011 22:08
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Geometria Espacial

Mensagempor Star » Ter Mar 06, 2012 15:58

E outra coisa se você usar a proporção para seguimentos correspondentes não será necessário provar para os dois casos que você cita, pois o teorema de Tales é generaliza e não supões duas situações uma onde o plano está a uma distância igual e outra em distâncias diferentes.
Sem mais.
Star
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 07, 2011 22:08
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59