por Rafael16 » Dom Mar 04, 2012 14:07
Boa tarde galera!
Resolvi essa equação:
2|x|² + 3|x| = 2
2|x|² = -3|x| + 2 --> C.E: -3x + 2 ? 0 ? x ? 2/3
2x² = -3x + 2
2x² + 3x - 2 = 0
Tirei a raiz e obtive 1/2 e -2. Como -2 é menor que 2/3, que é a condição de existência, sobrou só 1/2 que satisfaz a C.E. Portanto,
S = {1/2}. Mas a solução correta é S = {1/2, -1/2}.
E vi a resolução desse exercício logo abaixo mas não entendi:
2|x|² + 3|x| = 2
2|x|² + 3|x| - 2 = 0
para x < 0:
2x² - 3x - 2 = 0
raízes -> x = - 1/2 ou x = 2 ( não convém pois estamos supondo x < 0 )
para x >= 0 :
2x² + 3x - 2 = 0
raízes -> x = 1/2 ou x = - 2 ( não convém pois estamos supondo x >= 0 )
logo:
S = [ - 1/2 , 1/2 }
Não entendi esse "não convém", e também não entendi o porque o 2 não está no conjunto solução, pois é maior que C.E que é 2/3.
Obrigado
-
Rafael16
- Colaborador Voluntário

-
- Mensagens: 154
- Registrado em: Qui Mar 01, 2012 22:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: cursando
por LuizAquino » Dom Mar 04, 2012 15:35
Rafael16 escreveu:Resolvi essa equação:
2|x|² + 3|x| = 2
2|x|² = -3|x| + 2 --> C.E: -3x + 2 ? 0 ? x ? 2/3
A condição de existência está errada. O correto seria:

Ou seja, você escreveu -3x ao invés de -3|x|.
Resolvendo a condição de existência, temos que:




Rafael16 escreveu:2x² = -3x + 2
2x² + 3x - 2 = 0
Tirei a raiz e obtive 1/2 e -2. Como -2 é menor que 2/3, que é a condição de existência, sobrou só 1/2 que satisfaz a C.E. Portanto,
S = {1/2}. Mas a solução correta é S = {1/2, -1/2}.
Aqui há outro erro. Você tinha a equação:

A partir daí, você simplesmente (sem qualquer motivo para isso) substituiu |x| por x. Então você escreveu:


O erro desse raciocínio está no fato de que |x| não é igual a x.
Isso só é verdade quando

. No caso de x < 0, temos que |x| é igual a -x.
Rafael16 escreveu:E vi a resolução desse exercício logo abaixo mas não entendi:
2|x|² + 3|x| = 2
2|x|² + 3|x| - 2 = 0
para x < 0:
2x² - 3x - 2 = 0
raízes -> x = - 1/2 ou x = 2 ( não convém pois estamos supondo x < 0 )
para x >= 0 :
2x² + 3x - 2 = 0
raízes -> x = 1/2 ou x = - 2 ( não convém pois estamos supondo x >= 0 )
logo:
S = [ - 1/2 , 1/2 }
Não entendi esse "não convém", e também não entendi o porque o 2 não está no conjunto solução, pois é maior que C.E que é 2/3.
Aqui foi aplicado a definição de módulo:

Dessa forma, a solução foi separada em dois casos: quando quando x < 0 e quando

.
O termo "não convém" é o mesmo que "não serve".
No primeiro caso, considerou-se que x < 0.
Ao resolver a equação, determinou-se que x = -1/2 e x = 2.
Ora, mas como considerou-se que x < 0, a solução x = 2 "não serve" (ou "não convém").
Já no segundo caso, quando considerou-se que

, determinou-se que x = 1/2 e x = -2.
Ora, mas como considerou-se que

, a solução x = -2 "não serve" (ou "não convém").
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Rafael16 » Dom Mar 04, 2012 16:04
Muito obrigado LuizAquino. Mas fiquei com outra dúvida.
Você, na condição de existência, fez

Mas porque ficou

Você considerou no 1° caso como x negativo e deixou-o como positivo passando para o outro membro? E no segundo caso você considerou x como sendo positivo, e não precisou de passar para o outro membro. Certo?
Valeu Luiz!
-
Rafael16
- Colaborador Voluntário

-
- Mensagens: 154
- Registrado em: Qui Mar 01, 2012 22:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: cursando
por LuizAquino » Seg Mar 05, 2012 14:23
Rafael16 escreveu:Você, na condição de existência, fez

Mas porque ficou

Você considerou no 1° caso como x negativo e deixou-o como positivo passando para o outro membro? E no segundo caso você considerou x como sendo positivo, e não precisou de passar para o outro membro. Certo?
Em resumo, foi aplicado a definição de módulo:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equação Modular] com equação de 2º grau
por paola-carneiro » Qui Abr 05, 2012 15:53
- 2 Respostas
- 3210 Exibições
- Última mensagem por paola-carneiro

Sex Abr 06, 2012 16:23
Funções
-
- Equação modular
por amandactdas » Qui Jul 23, 2009 13:14
- 1 Respostas
- 2690 Exibições
- Última mensagem por Molina

Qui Jul 23, 2009 15:26
Funções
-
- Equação modular.
por JoaoGabriel » Sáb Set 18, 2010 11:01
- 3 Respostas
- 2343 Exibições
- Última mensagem por JoaoGabriel

Sáb Set 18, 2010 14:00
Funções
-
- Equação Modular
por baianinha » Ter Mai 24, 2011 22:15
- 2 Respostas
- 1812 Exibições
- Última mensagem por LuizAquino

Sex Mai 27, 2011 22:05
Sistemas de Equações
-
- [Equação Modular]
por marilgomes » Sáb Jun 01, 2013 13:44
- 0 Respostas
- 869 Exibições
- Última mensagem por marilgomes

Sáb Jun 01, 2013 13:44
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.