• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Plana envolvendo P.A

Geometria Plana envolvendo P.A

Mensagempor Ana Carolina Caetano » Sáb Mar 03, 2012 00:13

Alguem poderia me ajudar com essa questão de geometria plana? Eu tentei por P.A mas não consigo achar a razão! Desde já agradeço!

Dado um triângulo retângulo cujos catetos medem 2cm, construimos um 2º triangulo retangulo onde um dos catetos esta apoiado na hipotenusa do primeiro e o outro cateto mede 2cm. Construimos um 3º triangulo com um dos catetos medindo 2cm e o outro apoiado na hipotenusa do 2º triangulo. Se continuarmos a construir triangulos sempre da mesma forma, a hipotenusa do 15º triangulo medira:

15cm
15 raiz de 2
14 cm
8 cm (acho que é a resposta)
8 raiz de 2
Ana Carolina Caetano
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Mar 02, 2012 23:22
Formação Escolar: ENSINO MÉDIO
Área/Curso: Medicina
Andamento: cursando

Re: Geometria Plana envolvendo P.A

Mensagempor MarceloFantini » Sáb Mar 03, 2012 00:43

Não é progressão aritmética. A primeira hipotenusa tem valor 2 \sqrt{2}, enquanto que a segunda tem 2 \sqrt{3}.

Repetindo a construção para o terceiro, teremos (2 \sqrt{3})^2 + 2^2 = 12 + 4 = 16, daí a terceira hipotenusa terá 2 \sqrt{4} = 4.

Novamente, para que você perceba, repetimos a construção e vemos que (4)^2 + (2)^2 = 16 + 4 = 20, logo a quarta hipotenusa será 2 \sqrt{5}.

Consegue ver o padrão?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Geometria Plana envolvendo P.A

Mensagempor Ana Carolina Caetano » Sáb Mar 03, 2012 01:10

Entendi o padrão sim! A terceira hipotenusa é 4 e não 2 raiz de 4 certo?

Mas pra terminar o resto da questão eu vou ter que fazer até o 15º? Não tem uma forma mais rápida?

Obrigada!
Ana Carolina Caetano
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Mar 02, 2012 23:22
Formação Escolar: ENSINO MÉDIO
Área/Curso: Medicina
Andamento: cursando

Re: Geometria Plana envolvendo P.A

Mensagempor MarceloFantini » Sáb Mar 03, 2012 01:17

Bom, pela pergunta mostra que não percebeu. Lembre-se que \sqrt{4} = 2 logo 2 \sqrt {4} = 2 \cdot 2 = 4, é uma forma diferente de escrever o mesmo número.

O padrão é, se estivermos na n-ésima construção, a hipotenusa será 2 \sqrt{n+1}.

Primeira construção, hipotenusa: 2 \sqrt{1+1} = 2 \sqrt{2}.
Segunda construção, hipotenusa: 2 \sqrt{2+1} = 2 \sqrt{3}.
Terceira construção, hipotenusa: 2 \sqrt{3+1} = 2 \sqrt{4} = 2 \cdot 2 = 4.
Quarta construção, hipotenusa: 2 \sqrt{4+1} = 2 \sqrt{5}.

Assim em diante. Usando isso, resolva.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Geometria Plana envolvendo P.A

Mensagempor Ana Carolina Caetano » Sáb Mar 03, 2012 01:26

Ah, agora consegui! Brigadão
Ana Carolina Caetano
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Mar 02, 2012 23:22
Formação Escolar: ENSINO MÉDIO
Área/Curso: Medicina
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.