• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada de uma função] Iniciante em calculo

[Derivada de uma função] Iniciante em calculo

Mensagempor Leandro_Araujo » Seg Fev 27, 2012 01:01

Boa noite a todos.
Tenho uma grande dificuldade em operações algébricas. Não consigo encontrar a resposta do livro para a derivada da seguinte função:

f(x)=2x/(1+x)^3
Usando as regras de derivação cheguei até o seguinte ponto:
f'(x)=(1+x)^3*2x' - 2x*(1+x)^3'/((1+x)^3)^2
f'(x)=2*(1+x)^3 - 2x*3(x+1)^2/(1+3)^6
deste ponto em diante nada que eu tente me faz chegar no resultado:
f'(x)=2(1-2x)/(1+x)^4

Agradeço a atenção de todos!
Leandro_Araujo
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Fev 27, 2012 00:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Eletrônica e de Telecomunicações
Andamento: cursando

Re: [Derivada de uma função] Iniciante em calculo

Mensagempor MarceloFantini » Seg Fev 27, 2012 01:11

Leandro, poderia usar LaTeX no seu desenvolvimento para que possamos entender onde foi seu erro?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Derivada de uma função] Iniciante em calculo

Mensagempor Leandro_Araujo » Seg Fev 27, 2012 01:57

Mais é claro! É meu primeiro post.
Então segue:
A função é a seguinte:
f(x)=\frac{2x}{(1+x)^3}

Consegui chegar até o seguinte ponto:
f'(x)=\frac{(1+x)^3*2x'-2x*((1+x)^3')}{((1+x)^3)^2}
f'(x)=\frac{2(1+x)^3-6x(1+x)^2}{(1+x)^6}

Não consigo achar o seguinte resultado:
f'(x)=\frac{2(1-2x)}{(1+x)^4}

Tenho certeza que meu problema são as operações algébricas. Agradeço a atenção.
Leandro_Araujo
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Fev 27, 2012 00:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Eletrônica e de Telecomunicações
Andamento: cursando

Re: [Derivada de uma função] Iniciante em calculo

Mensagempor Leandro_Araujo » Seg Fev 27, 2012 02:31

Como sou persistente, acabei de achar o resultado.
De certa forma era simples, bastava colocar um fator em evidencia:

f(x)=\frac{2x}{(1+x)^3}

f'(x)=\frac{(1+x)^3*2x'-2x((1+x)^3')}{((1+x)^3)^2}

f'(x)=\frac{2(1+x)^3-6x(1+x)^2}{(1+x)^6}

Colocando 2(1+x)^2 em evidencia, temos:

f'(x)=\frac{2(1+x)^2*(x+1-3x)}{(1+x)^6}

Simplificando (1+x)^2 com (1+x)^6

f'(x)=\frac{2(1-2x)}{(1+x)^4}

Bom de qualquer forma agradeço, e o fato de ver minha resolução no fórum me fez enxergar as funções de outra forma. Vou continuar meus estudos. Abçs.
Leandro_Araujo
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Fev 27, 2012 00:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Eletrônica e de Telecomunicações
Andamento: cursando

Re: [Derivada de uma função] Iniciante em calculo

Mensagempor LuizAquino » Seg Fev 27, 2012 11:52

Leandro_Araujo escreveu:Tenho uma grande dificuldade em operações algébricas.


Leandro_Araujo escreveu:Tenho certeza que meu problema são as operações algébricas.


Leandro_Araujo escreveu:Como sou persistente, acabei de achar o resultado.
De certa forma era simples, bastava colocar um fator em evidencia:


Eu recomendo você assista a videoaula do Nerckie sobre fatoração. O título da videoaula é "Matemática Zero - Aula 11 - Fatoração". Ela está disponível no canal dele no YouTube:

http://www.youtube.com/nerckie
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Derivada de uma função] Iniciante em calculo

Mensagempor Leandro_Araujo » Seg Fev 27, 2012 14:10

LuizAquino escreveu:
Leandro_Araujo escreveu:Tenho uma grande dificuldade em operações algébricas.


Leandro_Araujo escreveu:Tenho certeza que meu problema são as operações algébricas.


Leandro_Araujo escreveu:Como sou persistente, acabei de achar o resultado.
De certa forma era simples, bastava colocar um fator em evidencia:


Eu recomendo você assista a videoaula do Nerckie sobre fatoração. O título da videoaula é "Matemática Zero - Aula 11 - Fatoração". Ela está disponível no canal dele no YouTube:

http://www.youtube.com/nerckie


Estou assistindo e gostando bastante. Já tinha visto outras videoaulas do Nerckie. Algebra é imprescindível para o cálculo. Vlw!
Leandro_Araujo
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Fev 27, 2012 00:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Eletrônica e de Telecomunicações
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?