• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Análise combinatória]

[Análise combinatória]

Mensagempor marcia_abreu » Sáb Fev 25, 2012 18:39

Por favor, preciso de ajuda com um problema de análise combinatóri?a. O problema é: Uma organização dispõe de 8 economistas e 5 engenheiros?. De quantos modos podemos formar uma comissão com 6 membros, se cada comissão deve ter, no mínimo, 3 engenheiros?? Resolvi assim: dividi a comissão de 6 membros em duas comissões de 3 membros cada uma; a primeira, uma comissão de 3 engenheiros e a segunda, uma comissão que pode ser formada com 8 economistas e os 2 engenheiros que não entraram na primeira comissão e depois multiplique?i uma pela outra para formar o número de comissões possíveis de 6 membros. Assim, na primeira comissão, são 5 engenheiros ocupando 3 lugares distintos, dividido pelo número de combinações totais de 3 engenheiros distintos, para que assim a ordem de escolha dos membros não faça diferença na comissão. Depois, a mesma coisa com os outros 10 membros (8 economistas?+2 engenheiros sobrando). A fórmula fica assim: (5x4x3/3x2) x (10x9x8/3x2?) = 1200. Mas o gabarito dá 708. Alguém pode ajudar? Grata, Marcia
marcia_abreu
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Fev 25, 2012 18:08
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: História da Arte
Andamento: formado

Re: [Análise combinatória]

Mensagempor fraol » Sáb Fev 25, 2012 19:31

A abordagem para resolver esse problema pode ser assim, por exemplo:

Com no mínimo 3 engenheiros em cada comissão de 6 membros, você pode ter as seguintes situações:

Uma comissão com 3 engenheiros escolhidos entre 5 e 3 economistas escolhidos entre 8:
5 \choose 3 8 \choose 3 = 10 . 56 = 560

Ou
Uma comissão com 4 engenheiros escolhidos entre 5 e 2 economistas escolhidos entre 8:
5 \choose 4 8 \choose 2 = 5 . 28 = 140


Ou
Uma comissão com 5 engenheiros escolhidos entre 5 e 1 economista escolhido entre 8:
5 \choose 5 8 \choose 1 = 1 . 8 = 8

Então somando 560 + 140 + 8 você obtém 708.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: [Análise combinatória]

Mensagempor marcia_abreu » Sáb Fev 25, 2012 19:44

Fraol, agradeço a sua ajuda. Cheguei a pensar em seguir por esse caminho tb, mas não o fiz, dá pra notar, né? Mas por favor, me diga o que há de errado com o meu raciocínio inicial. Pq a minha abordagem anterior não chega no mesmo resultado? Eu ainda não entendi qual o meu erro... Obrigada mais uma vez, Márcia

fraol escreveu:A abordagem para resolver esse problema pode ser assim, por exemplo:

Com no mínimo 3 engenheiros em cada comissão de 6 membros, você pode ter as seguintes situações:

Uma comissão com 3 engenheiros escolhidos entre 5 e 3 economistas escolhidos entre 8:
5 \choose 3 8 \choose 3 = 10 . 56 = 560

Ou
Uma comissão com 4 engenheiros escolhidos entre 5 e 2 economistas escolhidos entre 8:
5 \choose 4 8 \choose 2 = 5 . 28 = 140


Ou
Uma comissão com 5 engenheiros escolhidos entre 5 e 1 economista escolhido entre 8:
5 \choose 5 8 \choose 1 = 1 . 8 = 8

Então somando 560 + 140 + 8 você obtém 708.
marcia_abreu
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Fev 25, 2012 18:08
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: História da Arte
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59